

教材、教案、程式專案簡錄

手機遊戲設計教材節錄

9/30/2014

1

Unity Physic

物理元件使用與設定

•Unity內建的物理引擎可處理物體碰撞、布料模擬

•大量物理元件同時使用容易拖慢效能

•套用於元件時，可分作幾個項目
•Collider(碰撞體)

•物體可進行碰撞邊界的大小、位置、形狀、碰撞材質設定

•常用的有方形(Box)、球形(Sphere)、膠囊型(Capsule)及
地面(Terrain)碰撞體

•Rigidbody(鋼體)
•任何物件都需要加入Rigidbody後才能變成動態物件, 可
以設定質量等基本係數

•Physic Material(物理材質)
•摩擦係數、角摩擦係數、重力

找到場景中的物件

•得到物件
•GameObject obj = GameObject.Find(“ObjectName");

•Camera cm1 = GameObject.Find(“Main
Camera”).GetComponent<Camera>();

•得到物件上的component如Rigidbody
•Rigidbody rd =

GameObject.Find("Cube2").GetComponent<Rigidbody>();

物理引擎-移動一個物體的方法

• Rigidbody

• rigidbody.velocity = new Vector3(0,0,1.0f);

• rigidbody.AddForce(new Vector3(0,0,1.0f));

• Transform

• transform.Translate(Vector3.forward * Time.deltaTime,

Space.World);

• transform.position +=Vector3.forward * Time.deltaTime;

和上一次更新的
時間差

物體旋轉及縮放

•旋轉 (直接改變旋轉狀態)
go.transform.rotation = Quaternion.Euler(0, r, 0);

go.transform.localRotation = Quaternion.Euler(0, r, 0);

•旋轉(根據目前狀態旋轉)
go.transform.Rotate(new Vector3(0, r, 0));

•縮放
go.transform.localScale = new Vector3(1,2,3);

練習

• 建立一個Plane

• 放置4個cube，加上rigidbody，並使用不同的方式移
動這些方塊

9/30/2014

2

物理引擎-Rigidbody

•Gravity : 受不受重力影響(世界重力的設定在
Project Setting->Physic中的Gravity)

•Force：外力
•Drag : 阻力
•Friction : 摩擦力（由Collider的Material設定，但

通常需要enable Gravity，才會有效果）
•Velocity ：速度 （由程式設定）
•Non-Kinematic vs Kinematic

•Non-Kinematic ：AddForce() and AddTorque()
•Kinematic Rigidbodies ： 不受外力、重力、碰撞（但
可以收到isTrigger事件）影響。改變位置的方式需要直
接更改position，當自己移動，碰撞到其他物體時，仍
可以造成對方的影響

練習

•以剛剛的四個cube為基礎，加入一道cube牆(在移
動物體會經過的地方)

•嘗試修改動Cube的gravity，isKinematic （如用
translate/transform移動的cube加上isKinematic）
觀察物體移動的效果，撞到? 穿過去？

物理引擎-Collider

•Static collider ：只有collider, 則靜止不動, 讓別
人撞, 但自己不會移動

•Rigidbody Collider: 同時有rigidbody and collider,
發生碰撞時, 會受物理引擎（重力, 外力）影響, 而適
當移動

•Kinematic Rigidbody Collider :包含rigidbody 跟
collider, rigidbody中enable isKinematic. 碰撞效
果跟Static collider類似, 如果希望收到碰撞事件,
又希望被碰撞時自己不受做用力影響, 則設定成
isKinematic

•unity3d建議：Colliders that move should always
be Kinematic Rigidbodies.

物理引擎-Collision

• 碰撞的發生

•兩個物體如果都有碰撞體(Collider) 則
在接觸的時候，會發生碰撞事件,視設定
來決定行為

•如有rigidbody (no kinematic)則會撞開,
並收到相關訊息事件，如下面三個

•void OnCollisionEnter(Collision collision)

•void OnCollisionStay(Collision collision)

•void OnCollisionExit(Collision collision)

• 摩擦力：碰撞的設定包括一個physic
Material，可以決定反彈特性跟摩擦力..等
等，需要搭配rigidbody的gravity發生

• 要收到碰撞事件，自己本身要有rigidbody

使用Layer

•每個GameObject都有所屬的Layer，預設為Default

•設定方法在Inspector視窗中的Layer

•加入新Layer的方法為Add Layer…之後會出現
TagManager

•Layer以數字存在

Layer Pullet的
Layer Mask ID
為8

設定互相碰撞的Layer

•碰撞的設定方法為按下Edit->Project Setting-
>Physics，在Inspector視窗內會出現如下圖

•在Layer Collision Matrix中可自由設定layer之
間的碰撞關係(是否會碰撞)

Pipe對上Pullet的欄位沒
打勾代表這兩個Layer的
物件互相不碰撞

9/30/2014

3

物理引擎- Collision

•重要屬性 Is Trigger :

•可忽略物理引擎效果的碰撞效果，如反作用力、阻力

•要引發Trigger事件，要收訊訊息的要有rigidbody

•使用時間：在靠近門的時候，自動開門，走到特定的地
方, 顯示資訊

•Enable isTrigger則收到的訊息不再是
OnCollisionEnter，而是

void OnTriggerEnter(Collider other)
void OnTriggerStay(Collider other)
void OnTriggerExit(Collider other)

物理引擎- Collision

•Collider 的形狀類型

•Box Collider – 方塊碰撞體

•Sphere Collider – 球狀碰撞體

•Capsule Collider – 膠囊狀碰撞體

•Mesh Collider – 使用model本身作為碰撞體，
Mesh Collider 不能互相碰撞

•Wheel Collider – 圓柱狀碰撞體

練習

•以剛剛的練習為基礎, 設定三道cube牆(在移動物
體會經過的地方）

•第一道：Collider (isTrigger)

•第二道：Collider

•第三道: Collider + Rigidbody

•嘗試修改移動cube的gravity，isKinematic ，觀察
物體移動的效果，撞到?穿過去?

•修改四個script，都接收OnCollisionEnter跟
OnTriggerEnter事件，在裡面印出碰撞的物件的name

•isTrigger跟isKinematic都會忽略物理引擎效果，
所以都不會收到OnCollisionEnter訊息

Question

•坦克砲彈
•Rigidbody (Gravity, AddForce, Velocity, IsKinematic),

•Collider(Friction, isTrigger)

•發射飛彈
•Rigidbody (Gravity, AddForce, Velocity, IsKinematic),

•Collider(Friction, isTrigger)

•不會動的城牆
•Rigidbody (Gravity, AddForce, Velocity, IsKinematic),

•Collider(Friction, isTrigger)

•會被主角碰到移動的垃圾桶
•Rigidbody (Gravity, AddForce, Velocity, IsKinematic),

•Collider(Friction, isTrigger)

物理引擎-Raycast

觀念：像子彈的物體移動速度太快, 超過物理引
擎偵測碰撞的頻率（frame rate）所以可能誤判，
所以使用預測方式的碰撞偵測

產生一個模擬的射線，沿著設定好的參數（起始
點，方位、長度）射出，判斷是否碰撞到物體，
如果有則傳回碰撞物體的資訊 (RaycastHit）

類型一： 從物體的角度來偵測是否碰到物體, 並
預測是否會發生碰撞

Raycast最近的物體

RaycastHit hitInfo = new RaycastHit();

Vector3 dir = new Vector3(-1,0,0);

if(Physics.Raycast (this.transform.position, dir, out hitInfo, 1))

{

 if (hitInfo.collider.gameObject.name == "CubeA")

 {

 print("shoot");

 }

}

目前物件的位置
作為起點

方向 搜尋目標

9/30/2014

4

Raycast 所有物體

Vector3 dir = new Vector3(-1,0,0);

RaycastHit[] hitInfos =

Physics.RaycastAll(this.transform.position, dir);

foreach (RaycastHit hitInfo in hitInfos)

{

 print(hitInfo.collider.gameObject.name);

}

為物件標上Tag

•Tag旗標是用來識別和分類物件的方法之一

•在Raycast時能用於識別物件

•設定Tag的方法在Inspector視窗中的Tag中點擊Add
Tag…之後會出現TagManager，拉下Tags之後就能加
入新的Tag

針對某類(Tag)做Raycast 搜尋

Vector3 dir = new Vector3(-1,0,0);

RaycastHit[] hitInfos =

Physics.RaycastAll(this.transform.position, dir);

foreach (RaycastHit hitInfo in hitInfos)

{

 if (hitInfo.collider.gameObject.tag != "Boom")

 print(hitInfo.collider.gameObject.name);

}

物理引擎-Raycast

類型二： 從Camera的角度來偵測是否碰到物體, 若有, 則可取到
由滑鼠或手指點到的GameObject

範例

Vector3 pos = Input.mousePosition;
Ray mouseRay = Camera.main.ScreenPointToRay(pos);
if (Input.GetMouseButton(0))
{
 if (Physics.Raycast(mouseRay))
 {
 …
 }
}

練習

•使用RayCast的技巧，在遊戲畫面中，按下滑鼠右鍵，
點選任一個遊戲物件，當滑鼠點擊到方塊就讓方塊
往上跳

物理元件使用與設定

•新增剛體效果於基本物件上

•選擇一個基本物件之後點選上方選單的
[Component]→[Physics]→[Rigidbody]

•點選 播放後可看到物體掉至地面上後停止

9/30/2014

5

物理元件使用與設定

•可設定物體碰撞時的特性

•選擇選單的[Assets]→[Import Package]→[Physic
Materials]

•之後按Import，將預設碰撞材質包全部匯入

物理元件使用與設定

•點選物件，點選[Component]項目中[Material]旁的
圓圈，可選擇剛匯入的預設碰撞材質

•套用之後點選 即可看到物件產生不同的碰撞效果

物理元件使用與設定

•物理互動布料功能使用

•可用來模擬衣服、旗幟、網子等柔軟表面

•點選Hierarchy中的[Create]→[Cloth]

•調整位置及大小，按下 可看到布與之前產生的物
件發生互動

物理元件使用與設定

•布的表面材質可在[Cloth Renderer]中的[Materials]項
目設定

•若發生穿透現象，表示布的網格(Mesh)過於稀疏

•可由第三方3D建模軟體(MAYA、3DMAX)產生較緊密之網格平
面，再將[Interactive Cloth]項目的[Mesh]設為匯入之平
面模型

物理元件使用與設定

•布料物裡綁定

•可將布料固定在多個其他物件上

•新增兩個長條物件於布的兩端，作為固定的物體

物理元件使用與設定

•選擇布面，將[Interactive Cloth]項目中之
[Attached Colliders]的Size設為2

•分別將[Element 0]及[Element 1]中的[Collider]設
為剛新增用來固定布的物件

•之後按下 即可看到布掛在兩根物件上

9/30/2014

6

物理元件使用與設定

•物理關節

•用以設定物件沿著某一軸心轉動

•以Hinge Joint為例：蹺蹺板

•新增一個方體，拉成長條平板狀

•點選長條平板，點擊選單中的
[Component]→[Physics]→
[Hinge Joint]

物理元件使用與設定

•在Hinge Joint項目中設定Ancher至(0,0,0)物件中心
點，Axis設為蹺蹺板旋轉的固定軸心

圖中旋轉軸心為
Z軸，故Axis設
為(0,0,1)

物理元件使用與設定

•在蹺蹺板上方新增一個物件，並賦予Rigidbody特性

•按下 ，物件下落後敲擊到蹺蹺板，即可看到蹺蹺
板以剛剛設定好之軸心旋轉

Import model & texture

•Model

•Unity支援.FBX, .dae, .3DS, .dxf 和 .obj等
Model格式

•加入Model方法 : 直接將model檔拉進Assets視窗內

•Texture

•幾乎所有圖檔格式都支援

•加入的方法跟Model相同

Import setting

• Texture Type

• Texture, Normal map, GUI, Cursor, Reflection, Cookie,

Lightmap, Advanced

Project setting

• Edit → Project Setting → Quality(品質)

9/30/2014

7

Input setting

•Input Manager 中可以定義所有input axes和遊戲
動作

•打開的方式 : Edit->Project Setting->Input

系統function

•Awake(){} : 物件創建之初呼叫

•Start() {} : 任何Update執行前，所有物件初
始化完成之後執行

•Update() {} ：每個frame更新時呼叫

•FixedUpdate() {} : 固定的framerate下呼叫此
函數

•OnGUI() {} : 當GUI事件(按下滑鼠或鍵盤)發生
和畫面更新時呼叫

•OnMouseDown(){} : 當滑鼠按下時呼叫

•OnTriggerEnter(){} : 當有Trigger物件剛接觸
時呼叫

•參考網站:
http://unity3d.com/support/documentation/Sc
riptReference/MonoBehaviour.html

常用系統物件

• Screen: 取得螢幕長和寬

 ScreenW = Screen.width;

 ScreenH = Screen.height;

• Application : 取得應用程式的run-time資料

Application.LoadLevel (”Level1");

• Time : 在Unity中取得時間資訊的class.

Time.deltaTime

• GUI : GUI類別用於處理介面，包含按鍵和介面圖片

void OnGUI(){

if (GUI.Button(new Rect(100, 100, 200, 200),”Play”)){

GUIHintHandle.iCountLoadingAnimation = 0;

}

}

常用系統物件及函式

•Input
•Input.GetAxis("Vertical");

 between -1 and 1 telling us which key is being
pressed, pressing A will give us -1 and pressing D
will give us 1.
•if(Input.GetButtonUp("Fire1")){ }

•Instantiate();
•Gameobject abc = Instantiate (prefab);

•Camera
•Camera objCamear = Camera.main.transform;

•Print(); debug 列印訊息
•Destory(gameObject, t); t 秒後銷燬一個空間中的

gameObject

Prefab

•Prefab

•可重複使用，且在遊戲執行中動態增減這些物件

•在場景中新加入一個Prefab物件時，相當於創建一
個新的實體(instance)，所有Prefab的實體連結到原
始的Prefab物件

•在程式執行中修改Prefab物件會改變所有使用相同
Prefab創建的實體

Prefab

要創建一個Prefab物件只需要拖曳你希望重複使用的
GameObject進入Project View中，拉入之後該
GameObject的名字會變為藍色。

9/30/2014

8

練習

• 練習: 讓Tank（Cube），發射一個子彈

• 放一個plane，cube進入場景

• 加入一個球並改變其顏色(材質)

• 將剛加入的球建成prefab

• 產生3個 GUI Buttons (right, left, front, back)

• 新建一個script在Tank上並實現以下功能

• 控制物體的移動（左右移動）

• 發射一個子彈，可以自我銷燬

sample code

• GameObject Tank = GameObject.Find(“Tank”);

• GUI.Butten(Rect(0,100,100,100) “Left”）);

• bullet= Instantiate (bulletPrefab, transform.position,

Quaternion.identity);

• bullet.velocity = transform.TransformDirection(Vector3(0, 5,

_ballSpeed));

• Physics.IgnoreCollision(transform.collider, bullet.transform.collider);

//設定忽略碰撞

• Destroy(gameObject, 2);

GUI scripting guide

• GUI stands for Graphical User Interface.

• 使用現成元件

• GUI Texture/GUI Text

• 使用GUI API (需要放置在OnGUI（）中）
• GUI.DrawTexture

• GUI.Lable

• GUI.Button

• ….

• GUISkin

• GUIStyle

• http://unity3d.com/support/documentation/Components/
GUI%20Scripting%20Guide.html

GUI- GUI controls

• 顯示文字

GUI.Label (new Rect (25, 25, 100, 30), "Label");

• 畫2D圖片

 GUI.DrawTexture(new Rect(10,10,60,60), aTexture,

ScaleMode.ScaleToFit, true, 10.0f);

• 畫按鈕

if (GUI.Button (new Rect (10,10,150,100), “Button")) {

 print ("You clicked the button!");

}

手機遊戲設計專案

Project 1：迷宮遊戲

 目的：

經由本專題製作，熟悉 Unity3D 的基本操作及使用者介面，並嘗試以 C#撰

寫程式與場景內物件互動。

 遊戲主軸：

開發一個 3D 的迷宮遊戲，使用者可透過方向鍵控制主角移動，並且美化

場景及使用者介面。

 基本項目：

1. 搭建完整的迷宮，並且使用正確的物理性質。

2. 使用正確的人物操作。

3. 簡單的使用者介面。

4. 畫面設計

A. 光源。

B. 粒子系統。

C. 地形。

D. 天空盒

E. 其他。

5. 聲音

A. 音效。。

B. 背景音樂。

 進階功能：

1. 使用多重攝影機並且可以進行切換。

2. 使用小地圖。

3. 設置迷宮機關。

4. 遊戲性

A. 劇情。

B. AI。

C. 計時。

D. 場景切換。

E. 其他。

5. 其他創意。

Project 2：2D 多人遊戲

 目的：

經由本專題製作，熟悉 Unity3D 的 2D、網路連線以及 AssetBundle 功能。

 遊戲主軸：

開發一個 2D 的多人連線遊戲，玩家可以透過網路連線與多人同時進行遊

戲，同時透過加載 AssetBundle 的方式來動態替換遊戲中素材。

 基本項目：

1. 3 種以上的 2D 物理。

2. 2 種以上的 2D 動畫。

3. 提供 UI 讓使用者選擇擔任 Host 還是 Client。

4. 物件正確同步。

5. 讀取 AsseetBundle 檔替換遊戲中素材。

6. 5 種以上的 Shader 特效。

 進階功能：

1. 遊戲性

A. 劇情。

B. AI。

C. 計時。

D. 場景切換。

E. 其他。

2. 進階操作介面

A. 華麗的使用者介面。

B. 虛擬搖桿。

C. 圖片按鈕。

D. 其他。

3. 其他創意。

Project 3：手機遊戲

 目的：

經由本專題製作，熟悉 Unity3D 中於行動裝置上之特殊互動方式，其中包

含 AR、多點觸控、陀螺儀等功能。

 遊戲主軸：

開發一個可遊玩的手機遊戲，該遊戲需使用到題目要求之技術，並且提供

存讀檔功能方便使用者儲存進度。

 基本項目：

1. 可遊玩的手機遊戲。

2. 使用 AR。

3. 運用到 Multi-touch。

4. 運用到 G-Sensor 或 Gyroscope。

5. 存讀檔功能。

 進階功能：

1. 遊戲性

A. 劇情。

B. AI。

C. 計時。

D. 場景切換。

E. 其他。

2. 進階操作介面

A. 華麗的使用者介面。

B. 虛擬搖桿。

C. 圖片按鈕。

D. 其他。

3. 其他創意

Project 4：第一人稱射擊遊戲

 目的：

經由本專題製作，熟悉 Unreal Engine 的基本操作及使用者介面，並嘗試以

藍圖功能撰寫程式與場景內物件互動。

 遊戲主軸：

以 Unreal Engine 提供的第一人稱射擊遊戲範本開發出一款可以遊玩的第一

人稱射擊遊戲，並且利用 Unreal Engine 的強大渲染引擎建置精緻的遊戲場

景。

 基本項目：

1. 玩家基本操作。

2. 改變子彈外觀。

3. 敵人會移動。

4. 敵人移動套用走路動畫

5. 敵人會攻擊。

6. 子彈碰撞後的事件處理(例：敵人扣血, etc…)。

7. 使用者介面。

 進階功能：

1. 敵人會動態生成。

2. 遊戲結束機制。

3. 額外音效。

4. 場景設計。

5. 其他創意。

圖學導論教材節錄

5/17/2019

1

Last Note

• Visibility
• Z-Buffer and transparency
• A-buffer
• Area subdivision
• BSP Trees
• Exact Cell-Portal

This Note

• Illumination Models

• Shading Models for Polygons

• Surface Detail

• The Rendering Pipeline

• Local Illumination and GL
shading in Prof. Yao’s
Fundamental CG.

• Project 3
• Check Point 1 Due at 11/21

• Check Point 2 Due at 12/12

• Demo Due at 1/16

Where We Stand

• So far we know
how to:
• Transform

between spaces

• Draw polygons

• Decide what’s in
front

• Next

• Deciding a pixel’s intensity and color

Why We Need Shading?

• Suppose we build a model of a sphere using many polygons and
color it with only one color. We get something like

• But we want

• Human vision uses shading as a cue to
form, position, and depth.

• Total handling of light is very expensive.

• Shading models can give us a good
approximation of what would “really”
happen, much less expensively

• Average and approximate

Shading

• Why does the image of a real sphere look like

• Light-material interactions cause each point to have a
different color or shade

• Need to consider
• Light sources
• Material properties
• Location of viewer
• Surface orientation

Light Transport

• The most general approach is based on physics - using principles such as
conservation of energy.

• A surface either emits light (e.g., light bulb) or reflects light for other
illumination sources, or both.

• Light interaction with materials is recursive.

• The rendering equation is an integral equation describing the limit of this
recursive process.

5/17/2019

2

09/16/2010 © 2010 NTUST

What Are the Patterns of Light in This
Room?

• Projector as light source

• Light transmitted through windows

• Blackboard is matte surface

• Edge of screen is shiny surface

• Shadows underneath the desks

Shading: Illumination

• Light Sources emit light
• EM spectrum

• Position and direction

• Surfaces reflect light
• Reflectance

• Geometry (position, orientation,
micro-structure)

• Absorption

• Transmission

• Illumination determined by the
interactions between light
sources and surfaces

Illumination (Shading) Models

• Interaction between light sources and objects in scene that
results in perception of intensity and color at eye

• Local vs. global models
• Local: perception of a particular primitive only depends on light sources

directly affecting that one primitive

• Global: also take into account indirect effects on light of other objects in
the scene

Local vs. Global Models

Local
• Geometry

• Material properties

• Shadows cast (global?)

Global
• Light reflected/refracted

• Indirect lighting

Local vs. Global Models Local vs. Global Models

5/17/2019

3

09/16/2010 © 2010 NTUST

Local Shading Models

• Local shading models provide a way to determine the
intensity and color of a point on a surface
• The models are local because they don’t consider other objects

• We use them because they are fast and simple to compute

• They do not require knowledge of the entire scene, only the current
piece of surface. Why is this good for hardware?

• For the moment, assume:
• We are applying these computations at a particular point on a surface

• We have a normal vector for that point

09/16/2010 © 2010 NTUST

Local Shading Models

• The rendering equation can’t be solved
analytically

• Numerical methods aren’t fast enough
for real-time

• What they capture:
• Direct illumination from light sources

• Diffuse and Specular reflections (Phong
reflection Model)

• (Very) Approximate effects of global lighting

• What they don’t do:
• Shadows

• Mirrors

• Refraction

• Lots of other stuff …

Local Shading Models

• Direct light is the color of the light source

• Reflected light is the color of the light reflected from the object surface.

• For rendering, color of light source and reflected light determines the colors
of pixels in the frame buffer

• Only need to consider the rays that leave the source and reach the viewers eye

Global Effects

Light Sources

• General light sources are difficult to work with because we must
integrate light coming from all points on the source

• Illumination function:

Detailed is given later

Light-material Interactions

• At a surface, light is absorbed, reflected, or transmitted

• The smoother a surface, the more reflected light is concentrated in the
direction a perfect mirror would reflected the light

• A very rough surface scatters light in all directions

• Translucent allows some light to pass through object i.e. refraction and
e.g., glass or water

smooth surface: specular rough surface: diffuse Translucent

5/17/2019

4

Surface Reflection

• When light hits an opaque surface some is absorbed,

• The rest is reflected (some can be transmitted too--but ignore that
for now)

• The reflected light is what we see

• Reflection is not simple and varies with material
• The surface’s micro structure defines the details of reflection

• Variations produce anything from bright specular reflection (mirrors) to
dull matte finish (chalk)

Phong Reflection Model

• A simple model that can be computed rapidly
• Has three components

• Diffuse
• Specular
• Ambient

• Uses four vectors
• To source
• To viewer
• Normal
• Perfect reflector

09/16/2010 © 2010 NTUST

“Standard” Lighting Model

• Consists of three terms linearly
combined:
• Diffuse component for the amount of

incoming light from a point source
reflected equally in all directions

• Specular component for the amount of
light from a point source reflected in a
mirror-like fashion

• Ambient term to approximate light
arriving via other surfaces

ambient diffuse specular

Ambient Shading

• Add constant color to account for disregarded illumination and
fill in black shadows; a cheap hack.

aakII
• : intensity of the ambient light

• : ambient-reflection coefficient: 0 ~ 1
aI
ak

Diffuse Shading

• The light is reduced by cos of angle
• This is because same amount of light is spread over larger

area when light comes in at an angle

Diffuse Shading

• Assume light reflects equally in all directions
• Therefore surface looks same color from all views; “view independent”

• Known as Lambertian and Matte

)(dp LVNkII

• Don’t want to illuminate back side. Use

)0,max(NLid Ik

• : point light source’s intensity

• : diffuse-reflection coefficient: 0 ~ 1

• : angle: 0°~ 90°

• vL: direction to the light source

• n : surface normal

pI

dk

5/17/2019

5

09/16/2010 © 2010 NTUST

Illustrating Shading Models

• Show the polar graph of the amount of light leaving for a
given incoming direction:

• Show the intensity of each point on a surface for a given
light position or direction

Diffuse?

Diffuse?

Light-Source Attenuation

• : light-source attenuation factor
• if the light is a point source

• where is the distance the light travels from the point source to the
surface

)(dpattaa LNkIfkII

attf

att 2
L

1
f

d

Ld

)1,
1

min(
2
L3L21

att dcdcc
f

Examples (Light Attenuation)

2
L

1

d

L

1

d

Light move away

Examples (kd and ka)

0.4 0.55 0.7 0.85 1.0
diffuse-reflection model with different dk

0.0 0.15 0.3 0.45 0.6
ambient and diffuse-reflection model with different ak

and 4.0,0.1 dpa kII

Specular Shading

• Some surfaces have highlights, mirror like reflection; view
direction dependent; especially for smooth shinny surfaces

Specular Reflection

• Ideal reflector:
• Angle of incidence= angle of reflection
• Viewer position matters
• e.g., white light shining on the object will be reflected

differently in red, green, blue channels
• e.g., more red and blue reflection here

5/17/2019

6

Specular Reflection
(Phong Reflectance Model)

• Incoming light is reflected primarily in the mirror direction, R
• Perceived intensity depends on the relationship between the viewing

direction, V, and the mirror direction
• Bright spot is called a specularity

• Intensity controlled by:
• The specular reflectance coefficient, ks

• The Phong Exponent, p, controls the apparent size of the specularity
• Higher n, smaller highlight

p
isIk)(VR

L
R

V

Specular Reflection

• Phong proposed this model
• Clamp to 0 -- avoid negative values
• The fuzzy highlight was too big without an exponent

Illustrating Shading Models

• Show the polar graph of the amount of light leaving for a
given incoming direction:

• Show the intensity of each point on a surface for a given
light position or direction

Specular?

Specular?

Specular Surfaces

• Most surfaces are neither ideal diffusers nor perfectly
specular (ideal refectors)

• Smooth surfaces show specular highlights due to incoming
light being reflected in directions concentrated close to the
direction of a perfect reflection

Specular
highlight

The Phong Illumination Model

cos 2cos 8cos 64cos
0

1

0 90
0

1

0 90
0

1

0 90
0

1

0 90

Examples (ks and n)

0.3n 0.5n 0.10n 0.27n 0.200n

1.0

25.0

5.0

sk

5/17/2019

7

Examples (ks and n) Calculating the Reflection Vector

• Fall off gradually from the perfect reflection direction

L

N

R

S

S

cosN

LLNN

LN

LNN

SNR

)(2

cos2

coscos

cos

The Halfway Vector (Blinn-Phong)

• Rather than computing reflection directly; just compare to
normal bisection property.

L
 N

R

V

H

HN

VL

VL
H

cos

09/16/2010 © 2010 NTUST

Specular Reflection Improvement
(Blinn-Phong)

• Compute based on normal vector and “halfway” vector, H
• Always positive when the light and eye are above the tangent plane

• Not quite the same result as the other formulation (need 2H)

p

isIk)(

/

NH

VLVLH

 L VNH

Putting It Together

• Global ambient intensity, Ia:
• Gross approximation to light bouncing around of all other surfaces

• Modulated by ambient reflectance ka

• Just sum all the terms

• If there are multiple lights, sum contributions from each light

• Several variations, and approximations …

 p
sdiaa kkIIkI)()(NHNL

The Phong Illumination Model

•
• : specular-reflection coefficient:0~1

• so, the Eq. can be rewritten as

• consider the object’s specular color

• : specular color

])()([sdλdpλattdλaaλλ
nVRkLNOkIfOkII

]cos)(cos[dλdpλattdλaaλλ nWOkIfOkII

s)(kW

])()([sλsdλdpλattdλaaλλ
nVROkLNOkIfOkII

sλO

5/17/2019

8

Example Approximations for Speed

• The viewer direction, V, and the light direction, L, depend on the
surface position being considered, x

• Distant light approximation:
• Assume L is constant for all x

• Good approximation if light is distant, such as sun

• Distant viewer approximation
• Assume V is constant for all x

• Rarely good, but only affects specularities

Distant Light Approximation

• Distant light approximation:
• Assume L is constant for all x

• Good approximation if light is distant, such as sun

• Generally called a directional light source

• What aspects of surface appearance are affected by this
approximation?
• Diffuse?

• Specular?

Local Viewer Approximation

• Specularities require the viewing direction:
• V(x) = ||c-x||

• Slightly expensive to compute

• Local viewer approximation uses a global V
• Independent of which point is being lit

• Use the view plane normal vector

• Error depends on the nature of the scene

• Is the diffuse component affected?

Light Sources

• Two aspects of light sources are important for a local shading
model:
• Where is the light coming from (the L vector)?
• How much light is coming (the I values)?

• Various light source types give different answers to the above
questions:
• Point light source: Light from a specific point
• Directional: Light from a specific direction
• Spotlight: Light from a specific point with intensity that depends on the

direction
• Area light: Light from a continuum of points (later in the course)

Simple Light Sources

• Point light
• Model with position and color

• Distant source = infinite distance away (parallel) directional light

• Ambient light
• Same amount of light everywhere in scene

• Can model contribution of many sources and reflecting surfaces

5/17/2019

9

Types of Light Sources More Light Sources

• Spot light: point source with directional fall-off
– Restrict light from ideal point source

– Intensity is maximal along some direction D, falls off away from D

– Specified by color, point, direction, fall-off parameters

• Area light: Luminous 2D surface
– Radiates light from all points on its surface

– Generates soft shadows

Ambient Light Source

• Achieve a uniform light level

• No black shadows

• Ambient light intensity at each point in
the scene

Point Light Source

• Illumination intensity at p:

• Use scalar I(𝑉) to denote any of three components.
• Points sources alone aren’t too realistic looking -- tend to be high

contrast Add ambient light to mitigate high contrast
• Most real-world scenes have large light sources

Point Light Source

• Point light sources alone aren’t too realistic
• Drop off intensity more slowly

• In practice, we also replace the term by something that falls off

more slowly

Direct Light Source

• Most shading calculations require direction from the
surface point to the light source position if the light
source is very far, the direction vectors don’t change e.g.,
sun

• Characterized by direction rather than position

5/17/2019

10

OpenGL Point and Directional Sources

• Point light:

• The L vector depends on where the surface point is located

• Must be normalized - slightly expensive

• To specify an OpenGL light at 1,1,1:

• Directional light: L(x) = Llight

• The L vector does not change over points in the world

• OpenGL light traveling in direction 1,1,1 (L is in opposite direction):

Glfloat light_position[] = { 1.0, 1.0, 1.0, 1.0 };
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

Glfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

-xp

-xp
L(x)

light

light

Spotlights

• Point source, but intensity depends on L:
• Requires a position: the location of the source

• Requires a direction: the center axis of the light

• Requires a cut-off: how broad the beam is

• Requires and exponent: how the light tapers off at the edges of the
cone

• Intensity scaled by (L·D)n

glLightfv(GL_LIGHT0, GL_POSITION, light_posn);

glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, light_dir);

glLightfv(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

glLightfv(GL_LIGHT0, GL_SPOT_EXPONENT, 1.0);

cut-off

direction

Spotlight Attenuation

• Add an exponent for greater control
• Spotlight is brightest along 𝑙
• Vector �⃗� with angle 𝑓from p to point on surface
• Intensity determined by cos(𝑓)
• Corresponds to projection of �⃗� onto 𝐼
• Spotlight exponent e determines rate of dropoff

• Final result is like point light but modified by this cone

09/16/2010 © 2010 NTUST

Color

• Do everything for three colors, r, g and b

• Note that some terms (the expensive ones) are constant

• Using only three colors is an approximation, but few graphics
practitioners realize it
• k terms depend on wavelength, should compute for continuous

spectrum

• Aliasing in color space

• Better results use 9 color samples

 n
rsrdrirarar kkIIkI)()(,,,,, NHNL

Colored Lights and Surfaces

• If an object’s diffuse color is

then

where for the red component

however, it should be

where is the wavelength

),,(dBdGdRd OOOO),,(BGR IIII

)(dRdpRattdRaaRR LNOkIfOkII

)(dλdpλattdλaaλλ LNOkIfOkII

λ

10/27/09 © NTUST

Describing Surfaces

• The various parameters in the lighting equation describe
the appearance of a surface

• (kd,r,kd,g,kd,b): The diffuse color, which most closely maps
to what you would consider the “color” of a surface
• Also called diffuse reflectance coefficients

• (ks,r,ks,g,ks,b): The specular color, which controls the color
of specularities
• The same as the diffuse color for metals, white for plastics

• Some systems do not let you specify this color separately

• (ka,r,ka,g,ka,b): The ambient color, which controls how the
surface looks when not directly lit
• Normally the same as the diffuse color

5/17/2019

11

10/27/09 © NTUST

OpenGL Model

• Allows emission, E: Light being emitted by surface

• Allows separate light intensity for diffuse and specular

• Ambient light can be associated with light sources

• Allows spotlights that have intensity that depends on outgoing
light direction

• Allows attenuation of light intensity with distance

• Can specify coefficients in multiple ways

• Too many variables and commands to present in class

• The OpenGL programming guide goes through it all (the red
book)

10/27/09 © NTUST

OpenGL Commands (1)

• glMaterial{if}(face, parameter, value)
• Changes one of the coefficients for the front or back side of a face (or

both sides)

• glLight{if}(light, property, value)
• Changes one of the properties of a light (intensities, positions,

directions, etc)
• There are 8 lights: GL_LIGHT0, GL_LIGHT1, …

• glLightModel{if}(property, value)
• Changes one of the global light model properties (global ambient light,

for instance)

• glEnable(GL_LIGHT0) enables GL_LIGHT0
• You must enable lights before they contribute to the image
• You can enable and disable lights at any time

10/27/09 © NTUST

OpenGL Commands (2)

• glColorMaterial(face, mode)
• Causes a material property, such as diffuse color, to track the current
glColor()

• Speeds things up, and makes coding easier

• glEnable(GL_LIGHTING) turns on lighting
• You must enable lighting explicitly – it is off by default

• Don’t use specular intensity if you don’t have to
• It’s expensive - turn it off by giving 0,0,0 as specular color of the lights

• Don’t forget normals
• If you use scaling transformations, must enable GL_NORMALIZE to

keep normal vectors of unit length

• Many other things to control appearance

Multiple Light Sources

• If there are light sources, then
λ aλ a dλ att pλ d dλ s sλ

1

aλ a dλ att pλ d dλ s sλ
1

aλ a dλ att pλ d dλ s sλ
1

[() cos]

[() ()]

[() ()]

i i

i i

i i

n
i i

i m

n
i i

i m

n
i i

i m

I I k O f I k O N L k O

I k O f I k O N L k O R V

I k O f I k O N L k O N H

m

• So far, we have discussed illuminating a single point

• We have assumed that we know:
• The point

• The surface normal

• The viewer location (or direction)

• The light location (or direction)

• But commonly, normal vectors are only given at the vertices

• It is also expensive to compute lighting for every point

Shading so Far

 p
sdiaa kkIIkI)()(NHNL

Shading Polygonal Geometry

5/17/2019

12

10/27/09 © NTUST

Shading Interpolation

• Take information specified or computed at the vertices, and
somehow propagate it across the polygon (triangle)

• Several options:
• Flat shading

• Gouraud interpolation

• Phong interpolation

Computing Lighting at Each Pixel

• Most accurate approach: Compute component illumination at
each pixel with individual positions, light directions, and
viewing directions

• But this could be expensive...
y

y1

y2

y3

ys

I1

I2

I3

Ia Ip Ib Scan line

Shading Models for Polygons

• Flat Shading
• Faceted Shading

• Constant Shading

• Gouraud Shading
• Intensity Interpolation Shading

• Color Interpolation Shading

• Phong Shading
• Normal-Vector Interpolation Shading

Flat Shading

• Compute shading at a representative point and apply to whole
polygon i.e. apply illumination model once for each polygon.
• OpenGL uses one of the vertices

• Assumptions

• The light source is at infinity i.e. 𝑙 𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

• The viewer is at infinity i.e. �⃗� 𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

• The polygon represents the actual surface being modeled and is not an
approximation to a curved surface

• If light source or viewer is not at infty, need heuristic for picking color
- e.g., first vertex, or polygon center

• does not produce variations in gradation

Flat Shading

• Advantages:
• Fast - one shading computation

per polygon

• Disadvantages:
• Inaccurate

• What are the artifacts?

Flat Shading and Perception

• Lateral inhibition: exaggerates perceived intensity

• Mach bands: perceived “stripes” along edges

5/17/2019

13

Flat Shading

• Compute constant shading function, over each polygon
• Same normal and light vector across whole polygon
• Constant shading for polygon

II p

1
I

2
I

3
Ip

I

s
y

Shading Polygons

• Polygons often approximate
curve surfaces but are inherently
flat

• Consider polygonal ‘sphere’

• Want to smooth the rough face of
each surface facet

• How do we fix this?

Smooth Shading

• We can simply find a new normal at
each vertex for a sphere

• Easy for sphere model

• If centered at origin n = p

• Results in smoother shading

• Note silhouette edge

Gouraud Shading

• Shade each vertex with it’s own
location and normal

• Linearly interpolate the color
across the face

• Advantages:
• Fast: incremental calculations when

rasterizing
• Much smoother - use same normal

every time a vertex is used for a face

• Disadvantages:
• What are the artifacts?
• Is it accurate?

Intensity Interpolation (Gouraud)

21

1
2

21

2
1 yy

yy
I

yy

yy
II ss

a

31

1
3

31

3
1 yy

yy
I

yy

yy
II ss

b

ab

ap
b

ab

pb
ap xx

xx
I

xx

xx
II

aI
b

I

1
I

2
I

3
Ip

I

s
y

Phong Interpolation

• Interpolate normals across faces

• Shade each pixel individually

• Advantages:
• High quality, narrow specularities

• Disadvantages:
• Expensive

• Still an approximation for most
surfaces

• Not to be confused with Phong’s
specularity model

5/17/2019

14

Normal Interpolation (Phong)

0N
 aN

1N
bN

cN

0P 1PaP bP cP

What is Normal?

• Plane

• Normalize

• Note that
• right-hand rule determines outward face

Recall: Normal for Triangle

1 2 1 3

3 1 2 1() ()

N PP PP

P P P P

1P

2P

3PP

N

/ | |N N N

N × (𝑃 − 𝑃)

Using Average Normals

N = true (geometric) normal

Using Average Normals

1N

N 2N

Using Average Normals

1N

N 2N
N

 1 2
1

2
N N N

5/17/2019

15

Using Average Normals

1 2 3 4

1 2 3 4N N N N
N

N N N N

n

i
i

n

i
i

N

N

N

1

1

More generally,
N1

N2

N3

N4

N

It can also be area-weighted.

Definitions of Triangle Meshes

{v2,f1} : (nx,ny,nz) (u,v)
{v2,f2} : (nx,ny,nz) (u,v)
…

corner attributes

{f1} : { v1 , v2 , v3 }
{f2} : { v3 , v2 , v4 }
…

connectivity

geometry
{v1} : (x,y,z)
{v2} : (x,y,z)
…

face attributes
{f1} : “skin material”
{f2} : “brown hair”
…

Copyright©1998, Microsoft

Normal Interpolation (Phong)

21

1
2

21

2
1 yy

yy
N

yy

yy
NN ss

a

31

1
3

31

3
1 yy

yy
N

yy

yy
NN ss

b

Na N
b

1
N

2
N

3
Np

N

s
y

ab

ap

b

b

ab

pb

a

ap
xx

xx

N
N

xx

xx

N
NN

~

pN

p
p

NN
~

~

 Normalizing makes this a
unit vector

Examples (1/2)

Examples (2/2) Comparison (1/3)

Wire-frame Flat Shading

Phong ShadingGouraud Shading

5/17/2019

16

Comparison (2/3)

• Phong interpolation looks smoother -- can see edges on the Gouraud model
• But Phong is a lot more work

• both Phong and Gouraud require vertex normals
• both Phong and Gouraud leave silhouettes

Comparison (3/3)

• If the polygon mesh approximates surfaces with a high curvatures,
Phong smoothing may look smooth when Gouraud shows edges

• Phong smoothing requires much more work than Gouraud
smoothing

• Both need data structures to represent meshes so we can obtain
vertex normals

• Both leave the silhouette jagged

Problems with Interpolated
Shading

• Polygonal silhouette
• Perspective distortion
• Orientation dependence
• Unrepresentative surface normals

OpenGL Rendering Pipeline

• Pipeline: consists of multiple stages. Data flows in, being
processed in each stages, then flows out

• Stages: each stage represents an unique function to process the
input data
• Fixed function stages: limited customization capability, typically exposes

states for configuration

• Programmable shader stages: allow custom shader programs to be
executed within, providing broader capability of customization

Fixed Function Pipeline (Legacy)

Input Geometry &
Textures

GPU
Memory

Geometry

Textures

Buffers

Vertex
Processing

Primitive
Processing

Rasterizer

Fragment
Processing

Per-Sample
Processing

Frame buffers

: Input/Output

: Fixed Function Stages

: Data Flow

Fixed Function Pipeline (Legacy)

• Before OpenGL 3.0, OpenGL rendering is done in a fixed
function pipeline

• Fixed pipeline is like an machine with a lot of switches/values to
configure

• One cannot change how the function is implemented as well as
the order of execution

5/17/2019

17

Fixed Function Pipeline: Metaphor

How do I press these
buttons to get desired

effect?

OpenGL Fixed Function Pipeline

Programmable Pipeline

• Shader programs are introduced in OpenGL 2.0, and included in
the core profile in OpenGL 3.0

• Fixed function pipeline is deprecated since OpenGL 3.0

• Shader programs, written in OpenGL Shading Language(GLSL),
allow the programmers to customize certain stages in the
OpenGL rendering pipeline

First-Modified Pipeline

• Replace transform and lighting
with vertex shader
• Vertex shader must now do

transform and lighting

• But can also do more

• Replace texture stages with
fragment (pixel) shader
• Previously, texture stages were

only per-pixel operations

• Fragment shader must do
texturing

The First Generation

• Current hardware allows you to break from the standard
illumination model

• Programmable Vertex Shaders and Fragment Shaders allow you
to write a small program that determines how the color of a
vertex or pixel is computed
• Your program has access to the surface normal and position, plus anything

else you care to give it (like the light)

• You can add, subtract, take dot products, and so on

• Fragment shaders are most useful for lighting because they
operate on every pixel

The First Generation Example Programmable Pipeline: Metaphor

Let’s write a program to
create the effect!

Shader Programs

5/17/2019

18

Input Geometry &
Textures

GPU
Memory

Geometry

Textures

Buffers

Vertex
Shader Stage

Geometry
Shader Stage

Rasterizer

Fragment
Shader Stage

Per-Sample
Processing

Frame Buffers

Tessellation
Shader Stage: Programmable Shader Stages

: Input/Output

: Fixed Function Stages

: Data Flow

: Optional Programmable Stages

Vertex
Specification

OpenGL Shader Pipeline OpenGL Shader Pipeline Example

Programmable Pipeline V.S.
Fixed Function Pipeline

Programmable Pipeline Fixed Function Pipeline

Flexibility +implement various algorithms
in shader programs

-limited customization capability

For Simple Application -must configure the whole
pipeline

+performs simple task with less
configurations

For Complex Application +can achieve various effects -most advanced effects are
impossible

Learning Curve -one must have full knowledge
of the pipeline and GLSL before
writing an application

+can create simple applications
without much knowledge

Deploy -should consider all graphics
driver environment

+works in most graphics driver
environment

A STEP-WISE ILLUSTRATION
Steps toward reality

Primitive Wireframe Rendering Colored Wireframe

5/17/2019

19

Solid Rendering with Wireframe Constant Shading

Flat Shading Smooth Shading

Materials Textures

5/17/2019

20

Complex Lighting Effects Resources

• OpenGL

• http://www.opengl.org

• http://openglinsights.com/

• https://www.khronos.org/

• https://www.shadertoy.com

• FreeGLUT

• http://freeglut.sourceforge.net/

Reference Books

• The OpenGL Programming Guide

• http://www.opengl.org/documentation/red_book/

• Later in “Shader” section has more details

• Prof. Yao’s Fundamental of Computer Graphics devote to this
study.

圖學導論專案

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b41777070c8e&sid=5b4177a3ce46b 1/7

Project 1: An Image Editing Program

Introduction

In this project you will write an image editing program that allows you to load in one or more images and
perform various operations on them. Consider it to be a miniature Photoshop.

UI Operations

The operations are summarized here, with details on implementing them below.

Operation Points

Load 0, provided

Save 0, provided

Difference 0, provided

Run 0, provided

Color to Grayscale 5

Uniform Quantization 5

Populosity 20

Naive Threshold Dithering 3

Brightness Preserving Threshold Dithering 7

Random Dithering 5

Clustered Dithering 10

Floyd-Steinberg Dithering 15

Color Floyd-Steinberg Dithering 10

Box Filter 15 or 3

Bartlett Filter 15 or 3

Gaussian Filter 15 or 3

Arbitrary-Size Gaussian Filter

10

Edge Filter 15 or 3
Enhance Filter 15 or 3
Half Size 8

Double Size 12

Arbitrary Uniform Scale 25 or 10

Arbitrary Rotation 25 or 10

NPR Paint 15 ~ 50

Grading

enu

Home

aculty

tudents

rojects

Research

Games

Others

Courses

http://dgmm.csie.ntust.edu.tw/?
http://dgmm.csie.ntust.edu.tw/?ac1=
http://dgmm.csie.ntust.edu.tw/?ac1=facultylist
http://dgmm.csie.ntust.edu.tw/?ac1=stulist
http://dgmm.csie.ntust.edu.tw/?ac1=resprojlist
http://dgmm.csie.ntust.edu.tw/?ac1=game
http://dgmm.csie.ntust.edu.tw/?ac1=other
http://dgmm.csie.ntust.edu.tw/?ac1=courlist

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b41777070c8e&sid=5b4177a3ce46b 2/7

In this project you score points for each image operation you correctly implement.
The possible operations and their values will be listed in the operation section.
The total number of points up for grabs is greater than 100, but the maximum any individual can get
is 100 + 10. Please aim for 110.
A reference program will be provided so that you can check your implementation, although you may
still get full points for an operation even if your result doesn't match the reference program's. Many
of the operations are sensitive to very subtle differences in coding, and it is not worth anyone's time
to try to have everyone implement everything in exactly the same way. The operation descriptions
below indicate the extent to which we think you should match the reference solution.
We will look for identical programs. If you are found to have duplicated someone else's work you will
be treated as a group and given half the earned points. We will also take steps to ensure that you
don't submit the reference program and don't manipulate the system in other ways we anticipate.

Submission

Please submit it to the indicate FTP site. TA will send you for further notification

Basic Program
The basic program must be controllable through a scripting language, and you should not change
this in any way. The project will be graded by running scripts, so the scripting interpreter must
function. The scripting language is simply a sequence of lines, each of which has a command and
some arguments, generally a filename. The commands for each operations are listed below along
with the arguments. All arguments should be considered strings. A user should be able to enter a
script in a window or load one from a file.
The program should maintain the current image, which is displayed. The current image is modified
by the various operations as outlined below. The skeleton already contains operations which
change the current image.
All files will be in the Targa (tga) format. LibTarga supports pre-multiplied RGBA images. To load the
alpha bits, tell it that you are loading 32 bit data, and it will fill the alpha channel (with ones if
necessary) along with the color information. When you read an RGBA image with LibTarga, it
returns pre-multiplied alpha pixel data. You must divide out the alpha channel before display, taking
care to avoid dividing by zero. The skeleton already does this for display.

Program Skeleton

We provide a skeleton programs:Project1 framework.rar. This is for practicing the rendering engine
which are kept using in my classes. You should modify the skeleton by changing the file TargaImage.cpp
and/or TargaImage.h to implement the functions. At the moment all the functions change the current
image to black.

NOTE: The TargaImage class stores RGBA. Many of the operations only need greyscale, so this is
a waste. Ignore it for now by storing grey as RGB with R=G=B, or put separate greyscale image
information inside the TargaImage class.
NOTE: Many of the operations you need to implement are very similar. For instance, all the filter
operations differ only in the filter mask, not the basic filtering algorithm. Write your program to take
advantage of such common operations.
IMPORTANT: If you choose not to implement a function, it is essential that the function call
ClearToBlack and return false. This is the default behavior, so if you don't change it, you should be
OK.
ALSO IMPORTANT: For each member in your group, you must alter the function MakeNames in
Main.cpp so that the function vsStudentNames.push_back is called with the member's name as the
argument. We will be using this information during the grading process.

1. A basic program skeleton in ogre version with the scripting language implemented is available. The
program provide the proper user interface to do the operations. In addition to the UI. We also
provide a script system for you to run a sequence of operations.

2. A basic program skeleton with the scripting language implemented is available. This program will
also load and save images with alpha (if present in the image).
As it is currently implemented, the skeleton will execute all the commands in a script file that is
given as an argument. To specify arguments in Visual Studio, go to the Debug part of the project
settings dialog. The skeleton also provides a single line command entry dialog. To execute a

http://dgmm.csie.ntust.edu.tw/?uid=5cddec99c2ad0

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b41777070c8e&sid=5b4177a3ce46b 3/7

command, type it in and hit the Enter key. Hitting Enter again will run the same command again. You
can of course change the command. Try "load test.tga" to load the test image. "save test-save.tga"
also works. (Leave out the quotes when you type things in.)
The skeleton is slightly modular in design. In particular, the widget for displaying an image is
separate from the object for storing the image, and both are separate from the main window itself.
There is a Makefile included in the program skeleton, and the skeleton should compile under Linux.
You are welcome to make use of this if you like, but it is an unsupported feature of the project. You
should not ask the TAs or the instructor questions about how to make your program run under
Linux.

Supporting Programs

We provide the following programs:

A reference program that implements all the operations.
We do not support you doing this project under Linux, however, there is a Linux binary reference
program that you can use in this unsupported capacity.
A program that shows targa files along with their alpha channel. Use this to test your compositing
operations.

We also provide a whole range of example images, some with non trivial alpha channels.

Details on Things to Implement

Things in bold are category headings. The comments associated with each category apply to all the sub-
operations. For instance, the comments associated with Filtering apply to all of the filtering operations.

Operation Keyword Arguments Details Points

Load load filename Load the specified image file and make it the current image. 0,
provided

Save save filename Save the current image to the specified file. 0,
provided

Difference diff filename Subtract the given image file from the current image and put
the result in the current image.

0,
provided

Run run filename Executes the script named filename. The script should
contain a sequence of other commands for the program,
one per line. The script must end with a newline.

0,
provided

Color to
Grayscale

gray Use the formula I = 0.299r + 0.587g + 0.114b to convert
color images to grayscale. This will be a key pre-requisite
for many other operations. This operation should not affect
alpha in any way.

5

24 to 8 bit
Color

 All of these operations assume that the current image has
24 bits of color information. They should still produce 24 bit
images, but there should only be 256 different colors in the
resulting image (so the image could be stored as an 8 bit
indexed color image). Don't be concerned with what
happens if you run these operations on something that is
already quantized. These operations should not affect alpha
- we will only test them on images with alpha = 1 (fully
opaque images).

Uniform
Quantization

quant-
unif

 Use the uniform quantization algorithm to convert the
current image from a 24 bit color image to an 8 bit color
image. Use 4 shades of blue, 8 shades of red, and 8
shades of green in the quantized image.

5

Populosity quant-
pop

 Use the populosity algorithm to convert the current 24 bit
color image to an 8 bit color image. Before building the color
usage histogram, do a uniform quantization step down to 32
shades of each primary. This gives 32 x 32 x 32 = 32768
possible colors. Then find the 256 most popular colors, then
map the original colors onto their closest chosen color. To

20

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b41777070c8e&sid=5b4177a3ce46b 4/7

find the closest color, use the euclidean (L2) distance in
RGB space. If (r1,g1,b1) and (r2,g2,b2) are the colors, use
sqrt((r1-r2)^2 + (g1-g2)^2 + (b1-b2)^2) suitably converted
into C++ code.

Dithering All of these operations should convert the current image into
an image that only contains black and white pixels, with the
exception of dither-color. If the current image is color, you
should first convert it to grayscale in the range 0 - 1 (in fact,
you could convert all images to grayscale - it won't hurt
already gray images). We will only test these operations on
images with alpha = 1.

Naive
Threshold
Dithering

dither-
thresh

 Dither an image to black and white using threshold dithering
with a threshold of 0.5.

3

Brightness
Preserving
Threshold
Dithering

dither-
bright

 Dither an image to black and white using threshold dithering
with a threshold chosen to keep the average brightness
constant.

7

Random
Dithering

dither-
rand

 Dither an image to black and white using random dithering.
Add random values chosen uniformly from the range
[-0.2,0.2], assuming that the input image intensity runs from
0 to 1 (scale appropriately). There is no easy way to match
the reference program with this method, so do not try. Use
either a threshold of 0.5 or the brightness preserving
threshold - your choice.

5

Clustered
Dithering

dither-
cluster

 Dither an image to black and white using cluster dithering
with the matrix shown below. The image pixels should be
compared to a threshold that depends on the dither matrix
below. The pixel should be drawn white if: I[x][y] >=
mask[x%4][y%4]. The matrix is:
 0.7059 0.3529 0.5882 0.2353 0.0588 0.9412
0.8235 0.4118 0.4706 0.7647 0.8824 0.1176
0.1765 0.5294 0.2941 0.6471

10

Floyd-
Steinberg
Dithering

dither-
fs

 Dither an image to black and white using Floyd-Steinberg
dithering as described in class. (Distribution of error to four
neighbors and zig-zag ordering).

15

Color Floyd-
Steinberg
Dithering

dither-
color

 Dither an image to 8 bit color using Floyd-Steinberg
dithering as described in class. You should use the color
table corresponding to uniform quantization. That is, the
table containing all colors with a red value of 0, 36, 73, 109,
146, 182, 219 or 255, green in the same range, and blue in
the set 0, 85, 170, 255. If you do this, but not the grayscale
version of Floyd-Steinberg, then you get 15 points.

10

Filtering All of these operations should modify the current image, and
assume color images. The alpha channel should NOT be
filtered. The alpha channel for all the test images will be 1
for all pixels, so you do not need to worry about the
differences between filtering regular pixels or pre-multiplied
pixels. Implement whichever approach you prefer.

15 for the
first 3 for
any
additional

Box Filter filter-
box

 Apply a 5x5 box filter.

Bartlett
Filter

filter-
bartlett

 Apply a 5x5 Bartlett filter.

Gaussian
Filter

filter-
gauss

 Apply a 5x5 Gaussian filter.

Arbitrary-
Size
Gaussian
Filter

filter-
gauss-
n

N (size) Apply an NxN Gaussian filter. Use the binomial method
presented in lecture to derive the filter values. Note that this
is the same Gaussian you will use if you do the NPR paint
task.

10

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b41777070c8e&sid=5b4177a3ce46b 5/7

Image
Resizing

 All of these functions should change the size of the current
image by the appropriate amount. They should also operate
on the alpha channel.

Half Size half Halve the image size. Use a 4x4 Bartlett filter to do the
reconstruction. That means that for each output pixel (i,j)
you place a 3x3 discrete filter at input pixel (2i,2j) and the
filter is:
 1/16 1/8 1/16 1/8 1/4 1/8 1/16 1/8
1/16

8, or
nothing if
you do
scale

Double Size double Double the image size. Use a 4x4 Bartlett filter to compute
the reconstructed pixel values. There are four specific
cases, depending on whether the desired output pixel is odd
or even in x or y. Three of the cases are given here, the
other can be derived from the last one given. If the output
pixel (i,j) has i even and j even, you apply the following filter
at input location (i/2,j/2):
 1/16 1/8 1/16 1/8 1/4 1/8 1/16 1/8
1/16

If the output pixel (i,j) has i odd and j odd, you apply the
following filter covering input locations (i/2-1,j/2-1) through
(i/2+2,j/2+2) (integer division):
 1/64 3/64 3/64 1/64 3/64 9/64 9/64 3/64
 3/64 9/64 9/64 3/64 1/64 3/64 3/64 1/64

If the output pixel (i,j) has i even and j odd, you apply the
following filter covering input locations (i/2-1,j/2-1) through
(i/2+1,j/2+2) (integer division):
 1/32 2/32 1/32 3/32 6/32 3/32 3/32
6/32 3/32 1/32 2/32 1/32

If the output pixel (i,j) has i odd and j even, you do
something very similar to above.

12, or
nothing if
you do
scale

Arbitrary
Uniform
Scale scale

amount Scale the image up or down by the given multiplicative
factor. By uniform scaling I mean scale the x and y axes by
the same amount, so the aspect ratio does not change. Use
Bartlett filters for the reconstruction. The reconstruction filter
should be a Bartlett filter of width 4 pixels, so it always picks
up 4x4 values in the input image (although some of these
values may be multiplied by 0). Note this is the same filter
size used for double and half size operations above. You
can get 25 points for this if you did not do Arbitrary Rotation,
but at most 35 points for the combination of this and
Arbitrary Rotation. And if you do this you get no points for
double and half, because they can be done in one line if you
have this implemented.

25 or 10

Arbitrary
Rotation

rotate amount Rotate the image clockwise by the given amount, specified
in degrees. The output image should be the same size as
the imput image, with black pixels where there is no input
image data. Use a 4x4 Bartlett filter for the reconstruction,
as per the resizing operations above. You should note that
the reconstruction process for this operation and scale is
identical. You can get 25 points for this if you did not do
Arbitrary Scale, but at most 35 points for the combination of
this and Arbitrary Scale.

25 or 10

NPR Paint npr-
paint

 Fundamental (15)
Apply a simplified version of Aaron Hertzmann's painterly
rendering algorithm from the 1998 SIGGRAPH
Paper Painterly Rendering with Curved Brush Strokes of
Multiple Sizes. You need only implement the multiple

15 ~ 50

http://mrl.nyu.edu/publications/painterly98/hertzmann-siggraph98.pdf

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b41777070c8e&sid=5b4177a3ce46b 6/7

(circular) brush size version from section 2.1 of this paper. A
function to do the actual drawing of the circular strokes
(TargaImage::Paint_Stroke) has been provided for you.

To match the reference solution (which is what you're
graded on), your implementation should use the brush size
radii of 7, 3 and 1. When calling the Gaussian-blur function,
use the filter constructed using the binomial coefficients with
a filter size of
 2 � radius + 1

The fg parameter should be set to 1, and the threshold
parameter T should be set to 25.

The difference function in Hertzmann's pseudo-code is
simply Euclidean distance (as specified in the text below the
paintLayer figure), so you'll need to compute and store
these distances on a per-pixel basis.

Advance (15 ~ 50)
You can add stroke or other effects into NPR rendering and
your score depends on how impressive your work.

Sample Results

Sample Results : Solution.rar

You can use the reference program to generate sample images, and then use the difference
operation to compare your results with the sample. The table below summarizes ways in which your
results could reasonably differ from the reference program's.

Operation Test Images(s) Notes

gray colors-for-bw.tga You should be able to reproduce this exactly.

quant-
unif

church.tga andwiz.tga You probably cannot re-produce this exactly. Your result should,
however, show the same poor quality and color banding effects.

quant-
popul

church.tga andwiz.tga You probably cannot re-produce this exactly. A populosity
algorithm should do a reasonable job on the gray floor, and not
too bad on the browns. It should, however, draw the blue ball
as gray, because there are not enough blue pixels to be
popular.

dither-
thresh

church.tga You should be able to reproduce this almost exactly. Some
pixels may be different around the boundaries between white
and black.

dither-
bright

church.tga You should be able to reproduce this almost exactly. Some
pixels may be different around the boundaries between white
and black.

dither-
rand

church.tga You have no chance of reproducing this exactly. Instead, you
should get an image that is similar in style but not identical.

dither-
order

church.tga You should be able to reproduce this almost exactly. A few
borderline pixels (those close to the threshold) may be different.

dither-
cluster

church.tga You should be able to reproduce this almost exactly. A few
borderline pixels (those close to the threshold) may be different.

dither-fs church.tga There's a good chance you can re-produce this exactly, but it is
not essential. The character of your result should be similar.

dither-
color

church.tga There's a good chance you can re-produce this exactly, but it is
not essential. The character of your result should be similar.

filter-
box

church.tga andchecker.tga You may get different results around the boundary, but interior
pixels should be identical. The reference program extended the
size of the input image by reflecting it about its edges.

filter- church.tga andchecker You may get different results around the boundary, but interior

http://dgmm.csie.ntust.edu.tw/?uid=5cddec99ca678
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/colors-for-bw.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/wiz.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/wiz.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/checker.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/checker.tga

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b41777070c8e&sid=5b4177a3ce46b 7/7

bartlett pixels should be identical. The reference program extended the
size of the input image by reflecting it about its edges.

filter-
gauss

church.tga andchecker You may get different results around the boundary, but interior
pixels should be identical. The reference program extended the
size of the input image by reflecting it about its edges.

filter-
gauss-n

church.tga andchecker The differences are the same for the 5x5 version of the
gaussian filter.

half church.tga andchecker.tga You may get slightly different results, particularly around the
boundary.

double church-
small.tgaand checkers-
small.tga

You may get slightly different results, particularly around the
boundary.

scale church.tga andchecker.tga You may get different results, but they should be qualitatively
similar (no banding).

rotate church.tga andchecker.tga You may get slightly different results, particularly around the
boundary.

npr-
paint

church.tga andwiz.tga This is a randomized algorithm, so it is very unlikely that your
results will match the reference solution exactly (the reference
solution operating twice on the same image is unlikely to match
itself exactly). Your results should be qualitatively similar to the
output of the reference solution, but need not be pixel-wise
identical.

Copyright © 2019 NTUST CSIE Computer Graphics Lab. All right reserved.

http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/checker.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/checker.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/checker.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church-small.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/checkers-small.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/checker.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/checker.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/church.tga
http://graphics.csie.ntust.edu.tw/courses/pub/CG-2009F/Projects/Project1/wiz.tga

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b4177749fb7e&sid=5b41788e92cf4 1/4

Project 2: Maze Visibility and Rendering
Graphics

Introduction
Your task in this project is to implement a maze rendering program, not too far removed from those used
in computer games of the first-person variety. Read this entire document carefully before beginning, as it
provides details of the required implementation and various tips.

Mazes

A maze consists of rectangular cells separated by edges. The edges may be either transparent or
opaque. The viewer is supposed to see through transparent edges into the neighboring cells, and they
should not see through opaque edges. Each edge is assigned a color (which is meaningless for
transparent edges).

The maze is described as a 2D structure assumed to lie in the XY plane. To make it 3D, each edge is
extruded vertically from the floor to the ceiling. The floor is at z=-1 and the ceiling is at z=1. Each wall
should be drawn with its assigned color.

Associated with the maze is a viewer. The viewer has an (x,y,z) location, a viewing direction, and a
horizontal field of view. The view direction is measured in degrees of rotation counter-clockwise about
the positive z axis. The horizontal field of view is also measured in degrees. For the project, the viewer's
z will always be 0.

The maze file format consists of the following information (also look at one of the example mazes):

The number of vertices in the maze, nv. Each edge joins two vertices.
The location of each vertex, specified as it x and y coordinates. The vertices are assumed to be
numbered from 0 to nv - 1.
The number of edges in the maze, ne. Remember, there is an edge between every cell, even if
that edge is transparent.
The data for each edge: the index of its start vertex, the index of its end vertex, the index of the
cell to the left, the index of the cell to the right, a 1 if the edge is opaque, or 0 if transparent, and
an RGB triple for the color. The left side of an edge is the side that would appear to be on your left
if you stood at the start of the edge and looked toward to end. If there is no cell to the left or right,
an index of -1 is used. The edges are assumed to be numbered from 0 to ne - 1.
The number of cells in the maze, nc.
The data for each cell, which consists of the four indices for the edges of the cell. The indices are
given in counter-clockwise order around the cell.
The view data, consisting of the (x, y, z) viewer location, viewing direction and the horizontal field
of view.

Software Provided

Source code can be found in the MazeFramework.rar. Example Executable code is in exe.

Several classes have been provided. Together they build two programs. The first program creates
mazes in a certain format. The second is a skeleton maze renderer. The code is reasonably well

enu

Home

aculty

tudents

rojects

Research

Games

Others

Courses

http://dgmm.csie.ntust.edu.tw/?
http://dgmm.csie.ntust.edu.tw/?uid=5cddecdf59929
http://dgmm.csie.ntust.edu.tw/?uid=5cddecdf5ae5d
http://dgmm.csie.ntust.edu.tw/?ac1=
http://dgmm.csie.ntust.edu.tw/?ac1=facultylist
http://dgmm.csie.ntust.edu.tw/?ac1=stulist
http://dgmm.csie.ntust.edu.tw/?ac1=resprojlist
http://dgmm.csie.ntust.edu.tw/?ac1=game
http://dgmm.csie.ntust.edu.tw/?ac1=other
http://dgmm.csie.ntust.edu.tw/?ac1=courlist

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b4177749fb7e&sid=5b41788e92cf4 2/4

documented, but part of the project is figuring out how the given code works and how to integrate your
code into it. The programs are described below. To build them, set the appropriate startup project in
Visual Studio and build.

BuildMaze
The BuildMaze program provides a simple user interface for building mazes. The user specifies the
following parameters:

Cells in X: The number of cells in the x direction. Cells in Y: The number of cells in the y
direction. Cell X Size: The size of the cells in the x direction. Cell Y Size: The size of the cells in the
y direction. Viewer X: The initial x location of the viewer. Viewer Y: The initial y location of the
viewer. Viewer Z: The initial z location of the viewer. Viewer Dir: The initial viewing direction, given
in degrees of rotation about the positive z axis (the standard way of specifying a rotation in the
plane). Viewer FOV: The horizontal field of view of the viewer.

The Build Maze button builds a maze with the given parameters and displays it. The Save
Maze button requests a file name then saves the maze to that file. The Load Maze button requests
a maze file to load and display. Quit should be obvious.

RunMaze
The RunMaze program provides a skeleton for the maze walkthrough that you will implement. As
provided, it displays both a map of the maze and an OpenGL window in which to render the maze
from the viewer's point of view. On the map is a red frustum indicating the current viewer location,
viewing direction and field of view. The map is intended to help you debug your program by
indicating what the viewer should be able to see.

To move the viewer, hold down a W/S/A/D and Left/Right Arrow in the OpenGL window. Key W or
Key S is translated as forward or reverse motion of the viewer. Key A and Key D is translated as
move Left and Right. Left and Right Arrow motion changes the direction of view. As the skeleton
exists now, the viewer will move in the map window to reflect the Keyboard Control.

The system performs collision detection between the wall and the viewer to prevent the viewer from
passing through opaque walls. You should examine the code that does that to see an
implementation of clipping that clips a line segment to an edge using an approach similar to Liang-
Barsky clipping. The RunMaze program “do not” keeps track of which cell the viewer is currently in,
which is essential information for the cell-portal visibility algorithm you must implement.

You should pay particular attention to the function Mini_Map in OpenGLWidget.cpp that sets up the
OpenGL context for the window. As you will read later, all of the drawing you do in this project must
be in 2D, so the window is set up as an orthogonal projection using the special OpenGL utility
function gluOrtho2D. The Mini_Map function also draws the projection of the ceiling and the floor of
the maze. You should be able to reason as to why is it safe to treat the floor and ceiling as infinite
planes (hint: the maze is closed), and why those planes project to two rectangles covering the
bottom and top half of the window. You do not need to change this function.
C++ Classes
This document will not go into details of the C++ classes provided. You should spend a considerable
amount of time perusing them to figure out how everything works, and too look for little functions
that will be useful in your implementation, such as functions to convert degrees to radians and back
again (recall that all the C++ trigonometry functions take radians).

Your Task

Produce the viewer's view of the maze. You must extend the function OpenGLWidget::Map_3D to draw
what the viewer would see given the maze and the current viewing parameters. Note that the function is
passed the focal distance, and you also have access to the horizontal field of view. Your implementation
must have the following properties.

You must use the Cell and Portal visibility algorithm to achieve exact visibility. In other words,
apart from drawing over the floor and ceiling, no pixel should be drawn more than once. The
algorithm is given in psuedocode below.

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b4177749fb7e&sid=5b41788e92cf4 3/4

Note that you should implement the following functions. The function Draw_Cell(C, F) is initially called
with the cell containing the viewer, and the full view frustum. The neighbor(C,E)function returns the cell's
neighbor across the edge. Note that drawing a 2D edge means drawing a wall in 3D.

You are only allowed to use OpenGL 2D drawing commands. In other words, any vertices you
specify should useglVertex2f, glVertex2fv, glVertex2d or glVertex2dv only. You should
use glBegin(GL_POLYGON) to draw polygons, and glColor3f or glColor3fv to specify the polygon
color. We will check for other OpenGL calls when we grade.
As an side effect of the 2D restriction, you must do your own viewing transformation. That is, you
must take points specified in world space (where you will do the visibility) and transform them all
the way into screen space (where you will draw them.) The transformation will consist of a
translation and rotation to take the points from world to view space (with the origin at the viewer's
location) and then a perspective division to take the view space points into screen space. Note
that you are given the focal distance to make things easier, but you must still take care of several
small details. Note that you can do all the transformations using basic transformation matrices
followed by simple persepctive. You DO NOT need to construct general purpose viewing
transformation matrices.

Helpful Tips
The visibility algorithm is a 2D algorithm in this case, because all the walls are vertical and the
viewer is looking horizontally. That also means that all the pieces of wall that you draw will have
vertical left and right edges. They will not have horizontal top and bottom edges due to
perspective effects.
Implement a Frustum class that stores information about a viewing frustum, and has a method for
clipping a frustum to an edge. The easiest way to represent a frustum is as a point for the viewer's
location, and two edges for the left and right "clipping lines" of the frustum. There is no near and
far clip lines in this project.
Implement a function in the Edge class or the LineSeg class that clips an edge to a given view
frustum. You will have to work out a way to compute the intersection point of a line segment with
an infinite line in 2D space. Start by writing out the equations of the lines in parametric
coordinates. There is a function in the LineSeg class that may help get you started.
It is easiest to begin with a 1 by 1 maze, in which case there is no recursive step. That gives you
the opportunity to debug the transformations and projection before getting into the details of
manipulating view frustums.
To do the projection, first translate the point so that the viewer is at the origin (subtract the
viewer's location from the point.) Then undo the viewer's rotation direction by rotating the point.
Then do the perspective divide (using the simple perspective projection from the notes, suitably
modified.)
Note that in OpenGL 2D drawing, x is to the right and y is up. When you do the transformation
above, you end up with y to the left, z up and x into the screen. You have to fix this problem.

It cannot be stressed enough: This project can be completed in somewhere between one hundred and
five hundred lines of code. Spend a lot of time thinking about what you are trying to do with each piece of
code. And spend a lot of time looking at the code you are given. Start with pen and paper, because there
are a lot of small pieces of math that you need to work out. Grading and Submission

Grade

The project will be graded out of 50. You get:
20 points for projecting a wall onto the screen with perspective projection and drawing it.
10 more points for correctly clipping walls to the view, for a single cell maze.
20 more points for doing the recursive visibility.

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b4177749fb7e&sid=5b41788e92cf4 4/4

Submission

Submission will work similar to project 1. Grading of this project will be by demo in a series of face-to-
face grading sessions.

Criteria

You must work alone for this project.

Copyright © 2019 NTUST CSIE Computer Graphics Lab. All right reserved.

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 1/14

Project 3: A Tiny Amusement Park with Roller
Coasters and Water Shaders

Overview

This project would like you to create an amusement park with roller coasters allowing users to have
fun and interact with the program. Inside the amusement park, you must also explore a few possibility
to simulate the water surface and render the surface with shader programs which become more and
more important in graphics. At the end, you can use your creativity to create an interesting
environment or an interactive simple game.

In this project, you will create a train that will ride around on a track. When the track leaves the ground
(or is very hilly), the train becomes more like a roller coaster.

Once it becomes a roller coaster, loops, corkscrews, and other things become possible

enu

Home

aculty

tudents

rojects

Research

Games

Others

Courses

http://dgmm.csie.ntust.edu.tw/?
http://dgmm.csie.ntust.edu.tw/?ac1=
http://dgmm.csie.ntust.edu.tw/?ac1=facultylist
http://dgmm.csie.ntust.edu.tw/?ac1=stulist
http://dgmm.csie.ntust.edu.tw/?ac1=resprojlist
http://dgmm.csie.ntust.edu.tw/?ac1=game
http://dgmm.csie.ntust.edu.tw/?ac1=other
http://dgmm.csie.ntust.edu.tw/?ac1=courlist

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 2/14

The main purposes of this project is to give you experience in working with curves (e.g. the train and
roller coaster tracks). It will also force you to think about coordinate systems (to make sure that things
move around the track correctly). Thus, we will provide you framework code so that you don't need to
worry about that so much.

The core of the project is a program that creates a 3D world, and to allow the user to place a train (or
roller coaster) track in the world. This means that the user needs to be able to see and manipulate a
set of control points that define the curve that is the track, and that you can draw the track and
animate the train moving along the track. We'll provide the framework code that has a world and
manages a set of control points. You need to draw a track through those points, put a train on that
track, and have the train move along the track.

Basically in this project you will need to:
Find your way around the framework code.
Add the basic functionality: draw a track (curve) based on the control points and draw a train on
that track. If you do the latter part correctly, the framework will make it easy to animate the train
going around the track. You will also need to implement a "train view" (so the user can "ride" your
train).
Add more advanced features: nicer drawing of the track, arc-length parameterization, more kinds
of splines, physics, ...
Add special effects and extra features to make it really fun. Really nice looking train cars, scenery,
better interfaces for creating complex tracks, ...

I must emphasize that the basic functionality is most important, and the core advanced features (arc-
length parameterization) are the next most important things. Fancy appearance (like using textures
and pretty lighting) aren't the focus here - add them only if you have time after doing the more
important things.

We have provided a sample solution of the possible features (at least the most common ones). We
recommend that you play with it a bit to understand how it works. The example also has options that
lets you see some of the most common mistakes and simplifications that students make.

While the assignment was a little bit different in 1999, the basic idea was the same. For a totally crazy
solution to this assignment, check out RocketCoaster. It was what happened when I let two students
work as a team. There are two more "normal" example solutions to this project which are by and Rob,
both from 1999. One is a version that I wrote (called mikes-Train) and another was written by a really
good student (robs-train). I recommend that you try them out to get an idea as to what you'll be doing.

http://dgmm.csie.ntust.edu.tw/?uid=5cdded05c6ffd
http://www.cs.wisc.edu/graphics/Gallery/RocketCoaster/
http://dgmm.csie.ntust.edu.tw/?uid=5cdded05c701d

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 3/14

Mike's sample train, circa 1999

Rob Iverson's A+ assignment from 1999

Water Introduction

Water is commonly seen in our daily life. However, the interaction and rendering of water involve
complex physical computation. Furthermore, interactive graphics is a program which can interact with
the virtual world created by you.

Water Surface Generation With GPU
Basically, the water surface can be simply decomposed into two geometric components: high-level
surface structure and low-level surface details.

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 4/14

The surface structure represent the large scales of the wave movement and can be represented
with a set of 2D grid with the y direction represent the height of the grid point. A vertex shader can
be used to simulate the movement at the vertices by changing the normal and the y position of
the vertex.
The surface detail represent the small scale perturbation in the local area and generally can be
represented as a normal map. A pixel shader is created to generate a normal map for those
perturbation.

Generally, there are several ways to implement the wave on the surface of water:
Sine waves (10) (Ref. 1): The sum of the sine waves are chosen to represent the complex water
surface movement. The equation can be expressed as

Wavelength (L): the crest-to-crest distance between waves in world space. Wavelength L relates
to frequency w as w = 2w/L.
Amplitude (A): the height from the water plane to the wave crest.
Speed (S): the distance the crest moves forward per second. It is convenient to express speed as
phase-constant, phi , where phi = S x 2w/L.
Direction (D): the horizontal vector perpendicular to the wave front along which the crest travels.
Please refer to Ref. 1 for more direction details.
Height maps (10) (Ref. 3): similar to sine wave method, height map method decomposes the
wave on the water surfaces into a set of different level of detail represented as a heightmap (the
shape of single component and generated by artists) The following shows an example of the
height map.

The combination of the heightmap can be expressed as the following equation.

Please refer to Ref. 3 for more heightmap details.

Wave equation(Ref. 4): Generally, the movement of the wave can be expressed as a wave
equation as listed in the following:

Then by modeling the water surface as cubic Bspline surfaces, the right hand side of the equation can
be expressed by the following:

And then the integration can be computed with one of the following integration methods

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 5/14

Then the equation is solved at each vertex of the 2D mesh to generate the water surface. Please refer
to Ref. 4 for details.

Water Surface Rendering With GPU
Two important effects for the water surface rendering: reflection and refraction. We assume that we
are looking outside the water. The reflection and refraction can be generated with the following
different methods

Combination of refraction and reflection with an environment map for the sky and a set of texture
map for the box. (Ref. 1) (10)
Using the refraction map and reflection map to simulate the possible viewing condition from
above the water to simulate the refraction and reflection effects. (Ref. 4) (10). The following
shows an example of refraction and reflection map

In addition to the refraction and reflection, the caustics on the floor due to concentration of refraction
and reflection is also visually important. Therefore, simulate the caustics effect on the floor is also
important for the rendering. (5)

Ground Rules

You can complete the assignment individually or in pair. We allow (encourage) you to discuss the
project with your classmates, but the things you turn in must be substantively your own.

Your program must use OpenGL or OGRE3D and run on the computers in RB-508 (like everything
else in this class). While we strongly recommend you use the framework code, this is not a
requirement. The Framework/Example solution uses FlTk or OGRE3D, but you can use any UI toolkit
that you wish, providing its available in the Lab (talk to us) as we need to be able to build your
program.

If you want to use other external libraries/code, please ask us. Something like a math library or data
structures library is probably OK, but please check.

The Basic Functionality and Framework and Components

The most basic part of this assignment is to provide a "track" for the train track. Your program must do
the following things (we provided three version of framework: the):Project3Framework.rar

Provide a user interface to look around the world, as well as providing a "top down" view.
You must have a "ground" (so the track isn't just in space).
Provide a user interface that allows control points to be added, removed, or repositioned. Note:
even if you do a very advanced interface, you should display the control points and allow for them
to be edited manually.
Allow for the control points to be saved and loaded from text files in the format used by the
example solution.
Provide lighting.

http://dgmm.csie.ntust.edu.tw/?uid=5cdded05c71b9

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 6/14

Allow things to be animated (have a switch that allows the train to start/stop), as well as allowing
for manually moving the train forward and backwards.

If you make your own framework, please make sure you can do all of these things. You don't get any
extra points for writing it yourself, but you will lose points if you don't have the basic features.

The basic/essential features and components you must add:

Roller Coasters:
Have a CubicBSpline track. Your program should draw the track. The track should be a loop,
always, and should be either interpolate or approximate the control points.
Have a train that goes around the track (with a play button to start/stop it). The train should
always be on the track. Your train need not be fancy, but it should be obvious which end is the
front. And your train should not distort in wierd ways as it moves (if it is not rigid, it should be for a
good reason).
Have the train oriented correctly on the track. The train should always face forward if the track is
flat, and mostly face forward on a 3D track. Getting 3D orientation correct in the hard cases (like
loops) is a more advanced feature (see below).
Allow the user to "ride" the train (look out from the front of the train). There should be a button or
keystroke to switch to this view.
Have some scenery in the world besides the groundplane.
Your program is properly documented, is turned in correctly, and has sufficient instructions on
how to use it in the readme file.
You should have a slider (or some control) that allows for the speed of the train to be adjusted
(how far the train goes on each step, not the number of steps per second).

Amusement Part:

at least a water surface with interaction
water rendering effects: refraction and reflection
Multiple objects moving at any time (besides the ones that I made)
Multiple different types of behaviors (besides the ones that I made)
Multiple different types of buildings / scenery (besides the ones that I made)
Multiple new textures. Some must be hand painted. Some must not be flat (that is, it must wrap
onto multiple polygons)
You must attempt "enough" technical challenges (see the technical challenges page).
You must have at least 3 shaders in your program (by "shader" we mean a pair of vertex/fragment
programs attached to an object). At least one of these shaders must provide a procedural texture,
and at least one of the shaders must be (properly) affected by the lighting. At least one of the
shaders must be affected by the time of day (so you need to figure out how to pass the time of
day to the shader).
You program must work at a sufficient frame rate (which isn't hard since the tomputers are so
fast).
You must add something that is effected by the time of day (besides the one shader used to fullfill
the requirement above). For example, you can have an object that changes color (the shader is
sensitive to the time of day) and shape (something besides the shader is sensitive to the time of
day).
You must use at least one type of "advanced" texture mapping: multi-texturing, projective (slide
projector) texturing, environment mapping, bump mapping, or shadow mapping. (if you want to
pick something not on this list, you may want to check with us to make sure it counts) 10. An
object made out of a curved surface. You can implement subdivision, or some form of parametric
surfaces, or do a surface of revolution, or ... This is described more on the technical challenges
page.

The framework code is designed to make it easy to add all of those things. In fact, there are "TODO:"
comments explaining where to plug them in. See the the discussion of it here.

The framework code was used to make the sample solution. We didn't give you all of the files, but you
can see the "hooks" to the parts we didn't give you (they are turned off with a macro). In some places,
we intentionally left extra code for you to look at as a hint. The framework has some spiffier features
(like drop shadows), and some features you may not need (the control points have "orientation").

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 7/14

With the advance of GPU technology, GPU becomes more and more popular in computer graphics
specially in game industry. It is also noticed by general computation community. This project will
provide you with experience at programming shaders with GPUs, modeling objects and creating
interactive animations for computer graphics, and introduce you to many more of the features of
OGRE3D. Your goal is to make the scene as a scene park based on the roller coaster. The overall
goal of this project is to give you an opportunity to explore topics in interactive graphics: how do you
make things that look interesting, and be interactive. While some of this is artistic (you need to pick
interesting objects to make and good textures/... to look nice), some of it is technical: you need to pick
things that can be implemented efficiently and have interesting behavior. Like project 1, this project
defines a set of sub-goals with points awarded for each goal. Unlike project 1, the goals are far more
loosely defined, so there is scope to try interesting things to get all the points available.

Furthermore, water surfaces are common in computer graphics, especially in games for creating
fantastic effects. They are a critical element that can significantly improve the level of realism in a
scene. But depicting them realistically is a hard problem, because of the high visual complexity
present in the motion of water surfaces, as well as in the way light interacts with water. This project
would give you the chance to explore techniques developed for rendering realistic depictions of the
water surface. With these two things in mind, this project would like you to have the experience by
implementing a shader program and a CUDA program to generate a water surface and then rendering
it with reflection and refraction effects. In addition, ray-tracing is very important global illumination
algorithm to generate realistic images in graphics community. Therefore, the project also ask you to
implement a ray tracer for rendering the water and other scene objects.
In terms of your grade, effort spent on technical are more valuable because we are computer scientist.
For example, it is better to spend your time making a simple "blocky" car drive around in an interesting
way, or to make a simple shaped car out of parametric surfaces, or to light the car in an interesting
way, then to carefully model a gorgeous model of a car. (of course, if you want to make model a
gorgeous car, implement bezier patches to display its curved body, have it realistically race around a
track ... - we won't complain).
Some specific things we want you to learn from this assignment (which will explain some of the
requirements):

1. To try out some of the technical topics that we've discussed in class (subdivision surfaces, culling,
...) or topics we won't discuss too much in class (particle systems, fractals, ...)

2. To get some experience with how textures are used to make simple objects look more interesting.
3. To get some experience with creating geometry for graphics.
4. To gain experience working with a larger, more complex graphics application.
5. To gain some experience creating the behavior/motion of graphics objects.
6. To work with shaders for generating water surfaces and shading effects

The Tasks
Fundamentally, to generate the perception of the water in an interactive application consists of two
tasks:

1. Your program has to generate a water surface according to some physical rules which are formed
for some specific phenomenon in your mind. This generated surface represents the boundary of
water for a renderer to generate proper images for illustrating the water surface.

2. Your program must render the water surface to simulate the effects of refraction and reflection.
Furthermore, the caustics caused by water movement on the sea floor can be added to add more
reality.

In addition, realistically rendering the water surface is also important for other graphics applications, a
basic ray-tracing algorithm is required to simulate the global illumination effect in the scene. The ray
tracer will generate an image according to rays through the center of all pixels to interact with the
scene object and then compute the lighting effects and shadow effects.
Furthermore, each task requires modeling one or more objects using a specific technique from class.
The points available for each technique varies according to the difficulty of the task. In all cases, you
get a base number of points for implementing one object with a technique, then an extra 5 points for
each additional, but distinct, object with the same technique. You can score points for a maximum of
three objects with any one technique. For instance, if you create a texture mapped polygonal ticket
booth, and a texture-mapped polygonal roller-coaster carriage, and extrude the roller-coaster tracks,
then you get 20 + 5 + 25 = 50 points. If an object involves more than one thing, such as a texture
mapped, swept surface, then you can score points for both texture mapping and sweep objects.
The maximum number of points is 100. As with Project 1, you can do as much as you like, and we will
truncate to 100 as the final step in computing the grade. The individual tasks, point value, and
example objects are:

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 8/14

Roller Coasters Check Point:

Technique Details Points

Arc-Length
Parameterization

Having your train move at a constant velocity (rather than moving at a
constant change of parameter value) makes things better. Implementing
this is an important step towards many other advanced features. You
should allow arc-length parameterization to be switched on and off to
emphasize the difference, you should also provide a speed control.

5

Approximating
C2 curve

To draw the curves (or to compute arc length parameterizations), you need
to sample along the curve (for example, to draw lines connecting the
points). The curves are simple enough that simply sampling them uniformly
and densely is practical.

5

Draw nicer
looking tracks

The most basic track is just a line. To make something nicer (to make a
tube or a ribbon), you need to consider the geometry of the curve.

Parallel rails: for parallel rails, simply offsetting the control points (in
world space) doesn't work. You need to know the local coordinates as
you go around the track.
Rail ties: ties are the cross pieces on railroad tracks. Getting them right
(uniformly spaced) requires good arc-length parameterization. In the
example code, you can turn the arc-length parameterization on and off
to see the difference.

5

Correct
Orientation in 3D

The simple schemes for orienting the train break down in 3D - in particular,
when there are loops. Make it so that your train consistently moves along
the track (so its under the track at the top of a loop).
One good way to provide for proper orientations is to allow the user to
control which direction is "up" at points along the curve. This allows you to
do things like corkscrew roller coasters. The sample solution does this (its
why the framework has an orientation vector for each control point). Note
that the train still needs to face forward, the given orientation is just a hint
as to which way up should be.

 5

Water Simulation Check Point:

Technique Details Points

Sine Wave Implement the sine wave on the surface of water. 5

Height maps Implement the height map method on the surface of water. 5

Skymapping
reflection

Combination of refraction and reflection with an environment map for the sky
and a set of texture map for the box.

5

Refraction
map and
reflection

Using the refraction map and reflection map to simulate the possible viewing
condition from above the water to simulate the refraction and reflection
effects.

5

If there's something that you want to do that you think is a good task, but not listed, please ask. We
may extend this list at a later date as we think of more ideas. We may not be able to help you with
some of these, so doing it will require some bravery and determination.
It is important that if you do something, you are able to show it off in the demo/make a picture for your
album. So if you model some nice object, make sure there's a fast way to get the camera to go there.
Or, if you do subdivision, show different levels of the same object so we can tell you really did the
subdivision.
Some of the challenges require something to be complicated. You might wonder "when is an
animation complicated enough that it qualifies as a challenge" or something like that. Generally, if you
have any doubt, then it probably isn't so complicated. But if you are in doubt, ask.

Advanced Features

To get a better grade, and to really make the assignment fun, you should add some advanced features
to your train or amusement part.

Note: the exact point values for each of these is not given. The rough guide here will give you some
relative importances (big features are worth more than small ones).

We will only check the features that you say that you have implemented correctly. Partial credit will be
given for advanced features, but negative credit may be given for really incorrect features. (so, its

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 9/14

better to not say you implemented a feature than to show us something that is totally wrong).

Also, remember that in your demo, you will have to show off the feature, so think about what
demonstration will convince us that it works. For example, with arc-length parameterization, you're
best off being able to switch it on and off (so we can compare with the normal parameterization), and
think about a track that really shows off the differences. You should probably turn in example tracks
that show off the features.

Technique Requirement Points Suggestion

Tension
control of a
spline

Tension parameter controls how loosely or tightly the
cardinal spline fits the input control points.

2.5 Track

Multiple cars Having multiple cars on your train (that stay connected)
is tricky because you need to keep them the correct
distance apart. You also need to make sure that the
ends of the cars are on the tracks (even if the middles
aren't) so the cars connect.

2.5 Train

Real Train
Wheels

Real trains have wheels at the front and back that are
both on the track and that swivel relative to the train
itself. If you make real train wheels, you'll need arc-
length parameterization to keep the front and rear
wheels the right distances apart (make sure to draw
them so we can see them swiveling when the train goes
around a tight turn). In the sample solution, the wheels
are trucked (they turn independently), but each car still
rotates around its center (so its as if they are floating
above the wheels). You can do better than that.

2.5 Train

Simple
Physics

Roller coasters do not go at constant velocities - they
speed up and slow down. Simulating this (in a simple
way) is really easy once you have arc-length
parameterization. Remember that Kinetic Energy -
Potential Energy should remain constant (or decrease
based on friction). This lets you compure what the
velocity should be based on how high the roller coaster
is. Even Better is to have "Roller Coaster Physics" - the
roller coaster is pulled up the first hill at a constant
velocity, and "dropped " where it goes around the track
in "free fall." You could even have it stop at the platform
to pick up people.
Note: you should implement arc-length first. Once you
get it right it is much easier.

2.5 Train

Adaptive
subdivision

To draw the curves (or to compute arc length
parameterizations), you need to sample along the curve
(for example, to draw lines connecting the points). The
curves are simple enough that simply sampling them
uniformly and densely is practical. Adaptive sampling
(when the curve is straight, fewer line segments are
needed) is a better approach, but the benefits may be
hard to see. If you implement adaptive sampling, be
sure to have some way to show off that it really works.

2.5~5 Track

Make totally
over-the-top
tracks

This is more of a piece of artwork, but to do something
really fancy, you'll probably write code to create the
points.
If you're really into trains, you could have different kinds
of cars. In particular, you could have an engine and a
caboose.
Switches and more complex connections in the layout

5 Track

Multiple
tracks and
trains

The track could have branches, ... You'd need to have
some way to tell the trains which way to go, and some
way to deal with branching curves. The framework is

5 Track, Train

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 10/14

pretty much set up to have one track and train, but you
could change this without too much hassle. You would
need to make multiple World objects, but the hard part
would be adapting the UI.

Sketch-
based
interface

Allow the user to sketch a rough shape, and then
create a smooth curve from that. This is difficult to do
well, but if you're interested, we can suggest some
interesting things to try.

10 Track

Have People
on your
Roller
Coaster

Little people who put their hands up as they accelerate
down the hill are a cool addition. (I don't know why
putting your hands up makes roller coasters more fun,
but it does). The hands going up when the train goes
down hill is a requirement.

2.5 Train

Headline Have the train have a headlight that actually lights up
the objects in front of it. This is actually very tricky since
it requires local lighting, which isn't directly supported.

2.5 Train

Particle
system

Model a complex, moving object as a set of little particles.
You can make fireworks, rain, snow, fountains, fire, ...

5~12.5
(5 for first,
2.5 for each
extra one)

Foundation,
firework, ...

Non-flat
terrain

This is mainly interesting if you have the train track
follow the ground (maybe with tressles or bridges if the
ground is too bumpy).

5 Terrain

Support
Structure

When the track is in the air, you could create tressles or
supports to hold it up (like a real roller coaster). Of
course, you'd want to handle the case where the track
crosses.

2.5 Track

Scenery Having other (non-moving) objects in the world gives
you something to look at when you ride the train.

2.5 Scenery

Tunnels Make hills with tunnels through them for your train to go
through. The tunnel should adapt its shape to the track
(so it should curve like the track curves).

2.5 Scenery

Texture
Mapping

 You must create your own texture (at least 3) to earn
the point from this score.
Add texture mapped polygonal objects to the
environment. Each "object" for grading purposes
consists of at least 5 polygons all texture mapped.
Different objects require different maps.

2.5~5 Buildings,
walls,
roadways
Hierarchical
Animated
Model

Parametric
Instancing

Add an object described by parameters. You must
create multiple instances with different parameters, and
each class of model counts for separate points, not
each instance.

5 Trees
(cones on
sticks),
buildings,
even rides

Sweep
Objects(other
than rail)

Add an object created as a sweep, either an extrusion
or a surface of revolution. The important thing is that it
be created by moving some basic shape along a path.
The overall object must use at least three different uses
of the swept polygon. In other words, something like a
cylinder isn't enough, but something like two cylinders
joined to form an elbow is.

2.5 trash bins,
trees

Something
cools

Yes, you might think of something to do that we didn't
mention here. If its really cool, we might give you points for
it. We'd like you to focus on trying to do more with the
curves aspect of this assignment (rather than making
arbitrary eye-candy), so we won't give you points for just
making eye candy (e.g. putting textures on things) - there
will be a whole project devoted to that. If you want to do
something and you want to make sure it will be worth points,
send the instructor email. In the past people have come up

2.5 ~ 10 ...

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 11/14

with crazy stuff - some of them have become part of the
assignment.

Really Cool
Shaders

Graphics Processing Unit(GPU) has become very
important aspect in graphics. We would like to explore
the usage of them such as environment map, particle
simulation, water simulation, and so on. Everyone has
to write 3 shaders. But if the shaders do something
really cool, that counts for technical challenge. Bump
Mapping definitely counts as a technical challenge. A
properly anti-aliased procedural shader would be a
technical challenge. Phong shading would be a
technical challenge except that you can get the code
from just about anywhere - combine it with something
more imaginative to make a technical challenge. We'll
give technical challenge points for really imaginative
shaders.

2.5 ~ 7.5 Foundation,
firework, ...

Hack
Rendering
Tricks

Local lights (2.5~5): have a light that only effects
nearby objects. You can't just do this using the OpenGL
falloff since that limits the number of lights you have -
you'll need to switch lights on and off depending on
what object is being drawn. Note: local lighting is NOT
the hack "spotlight cones" that my sample program
does. Consider putting a flashing (or even spinning)
siren on a police car, or ...
Inter-object shadows and reflections (2.5-7.5): Shadows
on the groundplane are easy. Shadows cast from one
object onto another are much harder. Reflections of
actual (dynamic) objects are really tricky - as opposed
to using environment mapping with static environments.
Implementing shadow mapping (or shadow volumes) is
one way to do this.

2.5 ~ 12.5
(Depends
on TA's
decision)

...

Non-
Photorealistic
Rendering

Give your world an artistically styled look to the drawing. For
example, make everything look like a pencil drawing by
tracing object edges and making things squiggly, or use
"toon shading" to make things look like a cartoon. Note: if
you are really going to do an NPR world, we might be willing
to remove the texture requirements - but only if you'll be
doing enough NPR stuff.

5 ~
10(Depends
on TA's
decision)

Foundation,
firework, ...

Very
Advanced
Texturing

Skybox (2.5): make a textured sky - have clouds and
stars (at night). But note that a proper skybox stays
fixed relative to the camera (so it doesn't have to be so
huge that it causes Z-Buffer issues).
Billboard Object (2.5): model a complex shape by using
a flat object that moves to face the viewer (and
probably transparency). Nice trees can be done this
way.
Projector Textures (2.5): make a slide projector or
something that creates an unusual effect. To get full
credit, it needs to be clear that you are using the texture
matrix stack to get a projection.
Environment Map (2.5~5): Use environment mapping to
create a reflective surface. Be sure to describe how you
made the map.

2.5 ~ 12.5 ...

Artistic Points About how beautiful or cool is your amusement. It is a good
decision to decorate your amusement part with a theme.

2.5 ~ 12.5 ...

Submission

Upload it to the FTP site.

What to turn in

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 12/14

 By the deadline you must turn in:

Everything needed to compile your program (.cpp files, .H files, .vcproj files, .sln files, and UI files
or other things your program needs). Be sure to test that your program can be copied out of this
directory and compiled on a Storm computer.
if you work with a partner, only turn in one copy of the project. In the other person's directory put a
single file in your handing directory - a README.txt that says where to look.
Your README file.
You should make a subdirectory of the project directory called "Gallery." In this directory, please
put a few JPG pictures of the best scenes in your town. Please name the pictures login-X.jpg
(where X is a number). Put a text file in the directory with captions for the pictures. (note: to make
pictures, use the screen print and then use some program to convert them to JPG).
You must also make a subdirectory of the project directory called "Video" to put a 1~2 minutes of
video capturing your world.
Some example track files. You should not turn in the track files that we distribute (we give you a
bunch) - only turn in ones that you made.

Documentation

In your readme, please make sure to have the following (you can break it into seperate files if you
prefer):

1. A abstract of your work
2. Instructions on how to use your program (in case we want to use it when you're not around)
3. A list of all the features that you have added, including a description, and an explanation of how

you know that it works correctly.
4. An explanation of the types of curves you have created
5. A discussion of any important, technical details (like how you compute the coordinate system for

the train, or what method you use to compute the arc length)
6. A list of the objects you modeled (if you made lots of different objects, just list the 5-10 most

interesting ones). Please order the list so the most complicated/impressive one is first.
7. A list of the behaviors you made. Please order the list so the most complicated/impressive one is

first.
8. A list of the shaders that you made with a brief description of each.A list of the technical

challenges that you attempted / completed, with a description of what you did and what you used
it for.

9. Any non-standard changes that you make to the code
10. If you used the sample, code, a file that describes any changes you made to the "core" of the

system (e.g. other than changing main.cpp and adding new Objects and Behaviors).
11. If you did not use the example code, an explanation of why you chose not to, and a discussion of

your program's features.
12. Anything else we should know to compile and use your program

Some Hints

Use the framework. It will save you lots of time.

In case it isn't obvious, you will probably use Cardinal Cubic splines (like Catmull-Rom splines). Cubic
Bezier's are an option (just be sure to give an interface that keeps things C1. For the C2 curves, Cubic
B-Splines are probably your best bet.

You should make a train that can move along the track. The train needs to point in the correct
direction. It is acceptable if the center of the train is on the track and pointing in the diretion of the
tangent to the track. Technically, the front and back wheels of the train should be on the track (and
they swivel with respect to the train). If you implement this level of detail, please say so in your
documentation. It will look cool.

In order to correctly orient the train, you must define a coordinate system whose orientation moves
along with the curve. The tangent to the curve only provides one direction. You must somehow come
up with the other two directions to provide an entire coordinate frame. For a flat track, this isn't too
difficult. (you know which way is up). However, when you have a roller coaster, things become more
complicated. In fact, the sample solution is wrong in that it will break if the train does a loop.

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 13/14

The sample solution defines the coordinate frame as follows: (note: you might want to play with it
understand the effects)

1. The tangent vector is used to define the forward (positive Z) direction.
2. The "right" axis (positive X) is defined by the cross product of the world up vector (Y axis) and the

forward vector.
3. The local "up" axis is defined by the cross product of the first two.

Doing arc-length parameterizations analytically is difficult for cubics. A better approach is to do them
numerically. You approximate the curve as a series of line segments (that we know how to compute
the length of). A simple way to do it: create a table that maps parameter values to arc-lengths. Then,
to compute a parameter value given an arc length, you can look up in the table and interpolate.

Alternatively, you can do a little search to compute the arc length parameterization. If you have a
starting point (u) in parameter space, and a distance you want to move forward in arc length space,
you can move along in parameter space, compute the next point, find the distance to it, and
accumulate.

Suggestions
Have fun and be inventive.
A key thing to consider is polygon count. Graphics hardware can only display so many polygons
in a second, and if you try to display too many the frame rate will collapse. Texture maps also use
memory, so too many textures can even more dramatically affect performance.
The way the train alignment is set up, it is simplest to do just a single carriage, and a short one at
that. Doing lots of cars makes it harder to keep then on the track, although it is possible.
Make use of the OpenGL error checking mechanism. It is described in the OpenGL Programming
Guide.
Start simple - just try to get a polygon to appear in the center of the world.
The way the current carriage transformations are set up, the origin for the train is assumed to be
at the bottom (at track level).
It is OK to have multiple modeling techniques in one object. For instance, you could have a
carriage made up of some texture mapped polygons with some subdivision areas. You get all the
points if you do a sufficient amount of each technique.
It is OK to borrow code from other sources - but not other students. You will probably learn as
much trying to figure out how someone else's code works as you would doing it yourself.
Texture images abound on the web, so feel free to use them. Or you can use a program like
Photoshop to create your own. You might even find a use for the first project.

Results

林育生, and 郭俊廷, A Tiny Amusement Park with Roller Coasters and Water
Shaders -- 林育生_郭俊廷

Detail

陳泳峰, and 陳宥潤, A Tiny Amusement Park with Roller Coasters and Water
Shaders -- 陳泳峰_陳宥潤

Detail

留希哲, A Tiny Amusement Park with Roller Coasters and Water Shaders -- 留希

哲

Detail

韓悅華, and 陳洛翔, A Tiny Amusement Park with Roller Coasters and Water
Shaders -- 韓悅華_陳洛翔

Detail

http://dgmm.csie.ntust.edu.tw/?ac1=stuprojdetail&id=5c79193661d38
http://dgmm.csie.ntust.edu.tw/?ac1=stuprojdetail&id=5c791ceab1b4f
http://dgmm.csie.ntust.edu.tw/?ac1=stuprojdetail&id=5c79216ecdc50
http://dgmm.csie.ntust.edu.tw/?ac1=stuprojdetail&id=5c793baf7aac7

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5b417776d9dae&sid=5b41791ed8f04 14/14

Copyright © 2019 NTUST CSIE Computer Graphics Lab. All right reserved.

3D 遊戲設計教材節錄

5/17/2019

1

This Note

• Graphics Toolkit
• Coordinate system
• 3D Transformations
• Directions
• Rotation
• Details of Transformation is in Prof. Yao’s Fundamental of CG
• Project 1 Due & Demo

Question

• How do the graphics pipeline compute it?

The Graphics Process

Lighting
Information

Texture
Information

Rendering
Image

Storage &
Display

3D
Geometric

Models

3D
Animation
Definition

Rendering Primitives

• Use graphics hardware for real time…
• These can render points, lines, and triangles.
• A surface is thus an approximation by a number of such

primitives.

Traditional Rendering Pipeline

Transformation
Modeling
Transformation

Viewing
Transformation

Transformation
Projection
Transformation

Lighting

3D Geometric Primitives

Image

Clipping

Scan
Conversion

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Draw pixels (includes texturing, hidden surface, ...)

Clip primitives outside camera’s view

Transform into 2D screen coordinate system

Illuminate according to lighting and reflectance

• What’s wrong with this model (for
an OpenGL system)?
• Model/view transforms combined

• Really “vertices” not “primitives”
• Making this the vertex pipeline

• There’s a lot going on in the “scan
conversion” stage!

• Primitive assembly

• Rasterization

• Texture mapping

• Per-pixel lighting

• Visibility (Z-buffer)

• We refer to these collectively as the
pixel or fragment pipeline

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Lighting

3D Geometric Primitives

Image

Clipping

Scan
Conversion

Traditional Rendering Pipeline

5/17/2019

2

Rendering

• Generate an image showing the contents of some region of space
• The region is called the view volume, and it is defined by the user

• Determine where each object should go in the image
• Viewing, Projection

• Determine which pixels should be filled
• Rasterization

• Determine which object is in front at each pixel
• Hidden surface elimination, Hidden surface removal,

Visibility
• Determine what color it is

• Lighting, Shading

What’s a ”3D scene”?

• First, of all to take a picture, it takes a camera – a virtual one.
• Decides what should end up in the final image

• A 3D scene is:
• Geometry (triangles, lines, points, and more primitives)

• Light sources

• Material properties of geometry

• Textures (images to glue onto the geometry)

• ...

• A triangle consists of 3 vertices
• A vertex is 3D position, and may include normals and more.

Virtual Camera

• Defined by position, direction vector, up vector, field of
view(FOV), near and far plane.

point
dir

near
far

fov
(angle)

• Create image of geometry inside gray region
• Used by OpenGL, DirectX, ray tracing, etc.

GPUCPU

High-Level Pipeline

• Back up & think about the larger picture:

Application
Processing

Geometry
Processing

Rasterization

The APPLICATION Stage

• Executed on the CPU
• Means that the programmer decides what happens here

• Examples:
• Collision detection
• Speed-up techniques
• Animation

• Most important task: send rendering primitives (e.g. triangles) to
the graphics hardware

Application Geometry Rasterizer

The GEOMETRY Stage

• Task: ”geometrical” operations on the input data (e.g. triangles)

• Allows:
• Move objects (matrix multiplication)

• Move the camera (matrix multiplication)

• Compute lighting at vertices of triangle

• Project onto screen (3D to 2D)

• Clipping (avoid triangles outside screen)

• Map to window

Application Geometry Rasterizer

5/17/2019

3

Getting Geometry on the Screen

• Given geometry positioned in the world coordinate system, how
do we get it onto the display?
• Transform to camera coordinate system
• Transform (warp) into canonical view volume
• Clip
• Project to display coordinates
• Rasterize

Pipeline of Transformations

Local
Coordinate

Space

World
Coordinate

Space

View
Space

Canonical
View

Volume

Display
Space

Tomas Akenine-Mőller
© 2002

Animate Objects and Camera

• Can animate in many different ways with 4x4 matrices (topic of
next lecture)

• Example:

• Before displaying a torus on screen, a matrix that represents a
rotation can be applied. The result is that the torus is rotated.

• Same thing with camera (this is possible since motion is relative)

Application Geometry Rasterizer

3D Viewing Process

2D device
coordinates

Clipped world
coordinates3D world-coordinate

output primitives

Project onto projection plane

Clip against view volume

Transform into viewport in 2D device coordinates
for display

The RASTERIZER Stage

• Main task: take output from GEOMETRY and turn into
visible pixels on screen

• Also, add textures and various other per-pixel operations
• And visibility is resolved here: sorts the primitives in the z-

direction

Application Geometry Rasterizer

Application Geometry Rasterization

(a.k.a. “vertex pipeline”)
(a.k.a. “pixel pipeline”
or “fragment pipeline”)

Handle input Transform Rasterize (fill pixels)

Simulation & AI Lighting
Interpolate vertex
parameters

Look up/filter textures

Culling Skinning Z- and stencil tests

LOD selection
Calculate texture
coords

Blending

Prefetching

High-Level Pipeline

5/17/2019

4

Rewind! Let’s take a closer look

• The programmer ”sends” down primtives to be rendered through
the pipeline (using API calls)

• The geometry stage does per-vertex operations

• The rasterizer stage does per-pixel operations

• Next, scrutinize geometry and rasterizer

Application Geometry Rasterizer

The GEOMETRY stage in more detail

• The model transform

• Originally, an object is in ”model space”

• Move, orient, and transform geometrical objects into ”world
space”

• Example, a sphere is defined with origin at (0,0,0) with radius 1
• Translate, rotate, scale to make it appear elsewhere

• Done per vertex with a 4x4 matrix multiplication!

• The user can apply different matrices over time to animate objects

Application Geometry Rasterizer

GEOMETRY:The View Transform

• You can move the camera in the same manner

• But apply inverse transform to objects, so that camera looks
down negative z-axis

z x

Application Geometry Rasterizer

GEOMETRY: Lighting

• Compute ”lighting” at vertices

• Try to mimic how light in nature behaves
• Hard to uses empirical models, hacks, and some real theory

• Much more about this in later lecture

light

Geometry

blue

red green

Rasterizer

Application Geometry Rasterizer

The Full Story

• We have only touched on the complexities of illuminating
surfaces
• The common model is hopelessly inadequate for accurate lighting (but it’s

fast and simple)

• Consider two sub-problems of illumination
• Where does the light go? Light transport

• What happens at surfaces? Reflectance models

• Other algorithms address the transport or the reflectance problem,
or both
• Much later in class, or a separate course Computer Rendering

Compute lighting at vertices,
then interpolate over triangle

• How compute lighting?
• We could set colors per vertex manually
• For a little more realism, compute lighting from

• Light sources
• Material properties
• Geometrical relationships

light

Geometry

blue

red green

Rasterizer

5/17/2019

5

The Quest for Visual Realism

Copyright©1997, Jeremy Birn

Model

Model with
Shading

Model with
Shading

and Textures

The Limits of Geometric Modeling

• Although graphics cards can render over 10 million polygons per
second, that number is insufficient for many phenomena
• Clouds

• Grass

• Terrain

• Skin

Wikipedia

Beautification of Surfaces

• Texture mapping (ubiquitous in hardware)
• Paste photograph or bitmap on a surface to provide detail

(e.g. brick pattern, sky with clouds, etc.)

• Think of a texture map as contact paper, but made of
stretchable latex

• Map texture/pattern pixel array onto surface to replace
(or modify) original color; can still use original intensity
to modulate texture

• The function is called texture map and the process is
called texture mapping.

Microsoft Flight Simulator

Motivation to Use Texture Mapping (1/2)

How do we increase the amount of detail?
• Expensive solution: add more detail to model

+ detail incorporated as a part of object
– modeling tools aren’t very good for adding detail
– model takes longer to render
– model takes up more space in memory
– complex detail cannot be reused

• Efficient solution: map a texture onto model
+ texture maps can be reused
+ texture maps take up space in memory, but can be shared, and compression

and caching techniques can reduce overhead significantly compared to real
detail

+ texture mapping can be done quickly (we’ll see how)
+ placement and creation of texture maps can be made intuitive (e.g., tools for

adjusting mapping, painting directly onto object)
– texture maps do not affect the geometry of the object

Motivation to Use Texture Mapping (2/2)

• What kind of detail goes into these maps?
– Diffuse, ambient and specular colors
– Specular exponents
– Transparency, reflectivity
– Fine detail surface normals (bumps)
– Data to visualize
– Projected lighting and shadows
– Games use “billboards” for distant detail.

(sprites are effectively moving billboards)

Texture Maps

• How is texture mapped to the surface?
• Dimensionality: 1D, 2D (image), 3D (solid)

• Procedural v.s. table look-up

• Texture coordinates (s,t)
• Surface parameters (u,v)

• Projection: spherical, cylindrical, planar

• Reparameterization (Prof. Yao’s Class)

• What does texture control?
• Surface color and transparency

• Illumination: environment maps, shadow maps

• Reflection function: reflectance maps

• Geometry: displacement and bump maps

5/17/2019

6

Texture Maps Texture Mapping

geometric model texture mapped

Texture Mapping

2D mapping 3D mapping

Decal Textures

+ =

Copyright©2003, Technion-Israel Institute of Technology

Where Does Mapping Take Place?

• Mapping techniques are implemented at the end of the
rendering pipeline
• Very efficient because few polygons pass down the geometric

pipeline

Pixels
Pixel

operations

Geometric
processing Rasterization DisplayVertices

Texture Pipeline

• Object space location: the location in object space

• Parameter space coordinate: the coordinate in texture space

• Texture space location: clamp to (0, 1) position

• Texture value: the 4-column data store in the texture map

• Transformed texture value: RGB, RBGa, Normal, …

5/17/2019

7

GEOMETRY: Projection

• Two major ways to do it
• Orthogonal (useful in few applications)

• Perspective (most often used)
• Mimics how humans perceive the world, i.e., objects’ apparent size decreases

with distance

Application Geometry Rasterizer

GEOMETRY: Projection

• Also done with a matrix multiplication!

• Pinhole camera (left), analog used in CG (right)

Application Geometry Rasterizer

GEOMETRY: Clipping and Screen
Mapping

• Square (cube) after projection
• Clip primitives to square

• Screen mapping, scales and translates square so that it ends
up in a rendering window

• These ”screen space coordinates” together with Z (depth) are
sent to the rasterizer stage

Application Geometry Rasterizer

GEOMETRY: Summary

model space world space world space

compute lighting

camera space

projection
image space

clip map to screen

Application Geometry Rasterizer

RASTERIZER in More Detail

• Scan-conversion
• Find out which pixels are inside

the primitive

• Texturing
• Put images on triangles

• Interpolation over triangle
• Z-buffering

• Make sure that what is visible from
the camera really is displayed

• Double buffering
• And more…

Application Geometry Rasterizer

RASTERIZER—Scan Conversion

• Triangle vertices from GEOMETRY is input

• Find pixels inside the triangle
• Or on a line, or on a point

• Do per-pixel operations on these pixels:
• Interpolation

• Texturing

• Z-buffering

• And more…

Application Geometry Rasterizer

5/17/2019

8

RASTERIZER—Interpolation

• Interpolate colors over the triangle
• Called Gouraud interpolation

blue

red green

Application Geometry Rasterizer

RASTERIZER—Texturing

• One application of texturing is to ”glue” images onto
geometrical object

• Uses and other applications
• More realism

• Bump mapping

• Pseudo reflections

• Store lighting

• Almost infinitely many uses

+ =

Application Geometry Rasterizer

RASTERIZER—Z-buffering

• The graphics hardware is pretty stupid
• It ”just” draws triangles

• However, a triangle that is covered by a more closely located
triangle should not be visible

• Assume two equally large tris at different depths

Triangle 1 Triangle 2 Draw 1 then 2

incorrect

Draw 2 then 1

correct

Application Geometry Rasterizer

• Would be nice to avoid sorting…
• The Z-buffer (aka depth buffer) solves this
• Idea:

• Store z (depth) at each pixel
• When scan-converting a triangle, compute z at each pixel on triangle
• Compare triangle’s z to Z-buffer z-value
• If triangle’s z is smaller, then replace Z-buffer and color buffer
• Else do nothing

• Can render in any order

RASTERIZER—Z-buffering

Application Geometry Rasterizer

RASTERIZER—Double Buffering

• The monitor displays one image at a time

• So if we render the next image to screen, then rendered
primitives pop up

• And even worse, we often clear the screen before generating a
new image

• A better solution is ”double buffering”

Application Geometry Rasterizer

• Use two buffers: one front and one back

• The front buffer is displayed

• The back buffer is rendered to

• When new image has been created in back buffer, swap front and
back

RASTERIZER: Double Buffering

Application Geometry Rasterizer

5/17/2019

9

And, lately…

• Don’t forget! Not your father’s GPU

• Programmable shading has become a hot topic
• Vertex shaders

• Pixel shaders

• Adds more control and much more possibilities for the programmer

Application Geometry Rasterizer

HARDWARE

Vertex shader
program

Pixel shader
program

David Luebke

Programmable Pipelines

• The amount of programmability is increasing by leaps and
bounds
• Allow you to write a small program that determines how the color of a

vertex or pixel is computed

• Your program has access to the surface normal and position, plus anything
else you care to give it (like the light)

• You can add, subtract, take dot products, and so on

• Vertex shaders: more instructions, variable looping, branching,
subroutines

• Pixel shaders: still SIMD, but with more instructions, unlimited texture
accesses, pixel kill (good for lighting computation)

• The data formats are also improving
• IEEE floating point throughout the pixel pipeline!

• Various versions

Graphics Pipeline: GPU

GPUCPU

 Note:
– Vertex processor does all transform

and lighting

– Pipe widths vary
 Intra-GPU pipes wider than

CPUGPU pipe

 Thin GPUCPU pipe

– Many caches and FIFOs not shown

– Soon: render-to-vertex-array

 Here’s what’s cool:
– Can now program vertex

processor!

– Can now program pixel
processor!

ApplicationApplication
Vertex
Processor

Assembly
& Rasterization

Pixel
Processor

Video
Memory
(Textures)

Vertices
(3D)

Xformed,
Lit
Vertices
(2D)

Fragments
(pre-pixels)

Final
pixels
(Color, Depth)

Graphics State

Render-to-texture

Vertex
Processor Processor

Pixel
Processor

First Innovation

• Current hardware allows you to break from the standard
illumination model

• Programmable Vertex shaders and Fragment shaders allow you
to write a small program that determines how the color of a
vertex or pixel is computed
• Your program has access to the surface normal and position, plus anything

else you care to give it (like the light)

• You can add, subtract, take dot products, and so on

• Fragment shaders are most useful for lighting because they
operate on every pixel.

Original And Modified Pipeline

• Replace transform and lighting
with vertex shader
• Vertex shader must now do

transform and lighting

• But can also do more

• Replace texture stages with
fragment (pixel) shader
• Previously, texture stages were

only per-pixel operations

• Fragment shader must do
texturing

Second Innovation

• Geometry shaders are
introduced in Direct3D 10
and OpenGL 3.2;
• They can generate new

graphics primitives, such as
points, lines, and triangles,
from those primitives that
were sent to the beginning of
the graphics pipeline.

5/17/2019

10

Third Innovation: OpenGL 4.0

• Tessellation shaders are introduced
in OpenGL 4.0 and Direct3D 11.
• It adds two new shader stages to the

traditional model

• Tessellation Control Shaders (also
known as Hull Shaders)

• Tessellation Evaluation Shaders
(also known as Domain Shaders)

• For simpler meshes to be subdivided
into finer meshes at run-time according
to a mathematical function.

• Related variables:
• the distance from the viewing camera to

allow active level-of-detail scaling.

• …

Graphics Pipeline: GPU

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

Rasterizer
Geometry
Processor

Geometry
Storage

CPU

Vertices Pixels

Graphics Hardware / Interactive
Rendering

• Key idea: set of basic abstractions
• Z-buffer, texture, triangles, …

• Implement these really well

• Let programmers figure out how to use it to do other things

• Expand abstractions based on what people figure out to do

OpenGL Rendering Pipeline

• Pipeline: consists of multiple stages. Data flows in, being
processed in each stages, then flows out

• Stages: each stage represents an unique function to process the
input data
• Fixed function stages: limited customization capability, typically exposes

states for configuration

• Programmable shader stages: allow custom shader programs to be
executed within, providing broader capability of customization

Fixed Function Pipeline (Legacy)

• Before OpenGL 3.0, OpenGL rendering is done in a fixed
function pipeline

• Fixed pipeline is like an machine with a lot of switches/values to
configure

• One cannot change how the function is implemented as well as
the order of execution

Fixed Function Pipeline (Legacy)

Input Geometry &
Textures

GPU
Memory

Geometry

Textures

Buffers

Vertex
Processing

Primitive
Processing

Rasterizer

Fragment
Processing

Per-Sample
Processing

Frame buffers

: Input/Output

: Fixed Function Stages

: Data Flow

5/17/2019

11

Fixed Function Pipeline: Metaphor

How do I press these
buttons to get desired

effect?

OpenGL Fixed Function Pipeline

Programmable Pipeline

• Shader programs are introduced in OpenGL 2.0, and included in
the core profile in OpenGL 3.0

• Fixed function pipeline is deprecated since OpenGL 3.0

• Shader programs, written in OpenGL Shading Language (GLSL),
allow the programmers to customize certain stages in the
OpenGL rendering pipeline

First-Modified Pipeline

• Replace transform and lighting
with vertex shader
• Vertex shader must now do

transform and lighting

• But can also do more

• Replace texture stages with
fragment (pixel) shader
• Previously, texture stages were

only per-pixel operations

• Fragment shader must do
texturing

The First Generation

• Current hardware allows you to break from the standard
illumination model

• Programmable Vertex Shaders and Fragment Shaders allow you
to write a small program that determines how the color of a
vertex or pixel is computed
• Your program has access to the surface normal and position, plus anything

else you care to give it (like the light)

• You can add, subtract, take dot products, and so on

• Fragment shaders are most useful for lighting because they
operate on every pixel

• Classical Fixed-Function Pipeline (FFP): Per-Vertex Lighting,
MVT + VT
• Largely superseded on desktop by programmable pipeline

• Still used in mobile computing

• Modern Programmable Pipeline: Per-Pixel Lighting
• Vertex Shaders (FFP and Programmable)

• Input: per-vertex attributes (e.g., object space position, normal

• Output: lighting model terms (e.g., diffuse, specular, etc.)

• Pixel Shaders (Programmable Only)
• Input: output of vertex shaders (lighting aka illumination)

• Output: pixel color, transparency (R, G, B, A), and other stored in
framebuffer.

Vertex Shaders V.S. Pixel Shaders

• Brief Digression
• Note: vertices are lit, pixels are shaded

• “Pixel shader”: well-defined (iff “pixel” is)

• “Vertex shader”: misnomer (somewhat)

• Most people refer to both as “shaders”

Vertex Shaders V.S. Pixel Shaders

5/17/2019

12

The First Generation Example Programmable Pipeline: Metaphor

Let’s write a program to
create the effect!

Shader Programs

Input Geometry &
Textures

GPU
Memory

Geometry

Textures

Buffers

Vertex
Shader Stage

Geometry
Shader Stage

Rasterizer

Fragment
Shader Stage

Per-Sample
Processing

Frame Buffers

Tessellation
Shader Stage: Programmable Shader Stages

: Input/Output

: Fixed Function Stages

: Data Flow

: Optional Programmable Stages

Vertex
Specification

OpenGL Shader Pipeline OpenGL Shader Pipeline Example

• Ways to Handle Shadows
• Projected planar shadows: works well on flat surfaces only

• Shadow stencil buffer: powerful, excellent results possible; hard!

• OpenGL Shadow Mapping Tutorials
• Beginner/Intermediate (Baker, 2003): http://bit.ly/e1LA2N
• Advanced (Octavian et al., 2000): http://bit.ly/f1iRYB (old NeHe #27)

Shadow Stencil Buffer

Examples: Shadow Mapping

Shadow Stencil Buffer

• How To Create Direction Maps
• Latitude-Longitude (Map Projections) - paint

• Gazing Ball - photograph reflective sphere

• Fisheye Lens - standard (wide-angle) camera lens

• Cubical Environment Map - rendering program or photography

• Easy to produce

• "Uniform" resolution

• Simple texture coordinates calculation

Examples: Reflection / Environment
Mapping

5/17/2019

13

• Old NeHe OpenGL Mapping Tutorials (2000)
• #6 (texture map onto cube) – Beginner (Molofee): http://bit.ly/gKj2Nb
• #23 (sphere) – Intermediate (Schmick & Molofee): http://bit.ly/e3Zb8h

• nVidia Tutorial: OpenGL Sphere Map (1999):
http://bit.ly/eJEdAM

• Issues: Non-Linear Mapping, Area Distortion, Converting
Between Maps

Examples: Reflection / Environment
Mapping

• OpenGL Transparency How-To at
OpenGL.org: http://bit.ly/hRaQgk

• Screen Door Transparency
• Use glPolygonStipple(),

glEnable(GL_POLYGON_STIPPLE)

• See http://bit.ly/g1hQpJ

• Glass-Like Transparency using
Alpha Blending
• Use glEnable(GL_BLEND),

glBlendFunc(…)

• See http://bit.ly/hs82Za

Viola et al. (2004), http://bit.ly/dVEa7l
Technical University of Vienna, IEEE Vis 2004

Alpha blending: Lim (2010), http://bit.ly/6TsJrb
Goon Creative, Maya Transparency Tutorial

Examples: Transparency Map

• Goal: Create Illusion of Textured Surface

• Idea
• Start with regular smooth object

• Make height map (by hand and/or using program, i.e., procedurally)

• Use map to perturb surface normals

• Plug new normals into illumination equation

• Tutorial for OpenGL (Baker, 2003): http://bit.ly/fun4a5

+ =

Examples: Bump Mapping

• Displacement Map: Similar to Bump Map – Contains Delta
Values

• Displacement Mapping: Uses Open GL Shading Language
(GLSL)

• Tutorial using GLSL (Guinot, 2006): http://bit.ly/dWXNya

Displacement Mapping © 2005 Wikipedia
http://en.wikipedia.org/wiki/Displacement_mapping

Adapted from slides © 1995 – 2009 P. Hanrahan, Stanford
University
http://bit.ly/hZfsjZ (CS 348B)

Examples: Displacement Mapping

• Set Up Point Light Sources

• Set Up Materials, Turn Lights On

• Start Drawing (glBegin … glEnd)

OpenGL Shading (Overview) Texturing – Object Center Method

5/17/2019

14

Adapted from slides
© 2007 Jacobs, D. W., University of Maryland

OpenGL Texturing

• Fine Surface Detail: Bump (§20.5 Eberly 2e)

• Material Effects: Gloss (§20.6)

• Enclosing Volumes

• Sphere (§20.7)

• Cube (§20.8)

• Light

• Refraction for Transparency (§20.9)

• Reflection aka Environment (§20.10)

• Shadow

• Shadow Maps (§20.11, 20.13)

• Projective Textures (§20.12)

• More Special Effects (SFX)

• Fog (§20.14)

• Skinning (§20.15)

• Iridescence (§20.16), Water (§20.17)

Babylon 5
© 1993 – 1998 Warner Brothers Entertainment, Inc.

Mapping, Eberly 2E

FOLLOWING THE PIPELINE

Input Geometry &
Textures

GPU
Memory

Geometry

Textures

Buffers

Vertex
Shader Stage

Geometry
Shader Stage

Rasterizer

Fragment
Shader Stage

Per-Sample
Processing

Frame Buffers

Tessellation
Shader Stage: Programmable Shader Stages

: Input/Output

: Fixed Function Stages

: Data Flow

: Optional Programmable Stages

Vertex
Specification

The OpenGL Rendering Pipeline

OpenGL Primitive

• Define the connection between the Vertex

• Setup when call the Drawing Command

Vertex Specification

• First stage of rendering pipeline

• Fixed function stage

• Assembly vertices from one or more Buffer Objects for later
stages to consume

• The application provides a Vertex Array Object as its
configuration

• Work with different Draw Commands to create various input
formats to the pipeline

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

5/17/2019

15

Vertex Specification: APIs

• This stage is mostly configured, but not all, by:
• glBindVertexArray(vao)

• glDraw* functions

• Draw Command functions

• These APIs also mark the beginning of a rendering operation

• glDrawArrays, glDrawElements, …

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

Vertex Shader Stage

• First programmable stage

• Invoked once for each vertex of the vertex stream produced by the Vertex
Specification

• Isolated from one another, unaware of the primitive topology

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

Vertex Shader Stage: Operations

• Apply transform matrices

• Vertex skinning (skeleton-based animations)

• Per-vertex lighting calculations

• Any operations related to the geometry (shape) of the rendered
object

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

Vertex Shader Stage: Example

• Displacement Mapping: Vertex shader can offset every vertex
based on a texture to have more detail.

Kenneth Scott, id Software 2008 copyright

Vertex Shader Stage: Example

• Water wave: Vertex shader can offset a 2D plane vertex to
have different height according to time and location to create
wave-like results.

NVIDIA water
wave(https://goo.gl/Pr7CgN)

Tessellation Shader Stage

• Optional stage. Can be turned off

• Three sub-stages:

1. Tessellation Control Shader Stage

2. Tessellation Engine (fixed function stage)

3. Tessellation Evaluation Shader Stage

• Three sub-stages must be used together, or none at all

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

5/17/2019

16

Tessellation Shader Stage

• Map higher-order patches that represent smooth, curved
surfaces to conventional triangle-based raster hardware
• Common misunderstanding: tessellation = triangulation (wrong)

• Demand for increasing image quality
• High resolution models (1 character = 100K vertices)

• Greatly increases on-disk, in-memory storage, I/O bandwidth and
calculations

• Scale geometry detail between different hardware from a fixed input

• Relief the artists from participation in triangle-based mesh
implementation details

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

Tessellation Shader Stage

• Map higher-order patches that represent smooth,
curved surfaces to conventional triangle-based
raster hardware

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

• Common misunderstanding: tessellation = triangulation (wrong)

• Demand for increasing image quality
• High resolution models (1 character = 100K vertices)

• Greatly increases on-disk, in-memory storage, I/O bandwidth and
calculations

• Scale geometry detail between different hardware from a fixed input

• Relief the artists from participation in triangle-based mesh
implementation details

Tessellation Shader Stage: Example

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

Tessellation Shader Stage: Example

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

NVIDIA Terrain generator Example (https://goo.gl/RXYj9x)

• Terrain Generator : Subdivide the edge to present the curve with
more detail.

Tessellation Shader Stage: Example

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

G2

Geometry Shader Stage

• The last stage that can manipulate the geometry property of the
rendered object

• Invoked once for each primitive from the previous stages

• Less common in algorithm designs, probably due to performance
issues

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

投影片 95

G2 加㇐下郭鴻年的例子。
Graphics, 2017/9/15

5/17/2019

17

Geometry Shader Stage: Operation

• Programmatically insert/remove geometry

• Produce a different primitive type than is passed to it

• Pass geometry information to buffers through the transform
feedback function
• Transform Feedback: save geometry to a buffer object from the

geometry shader stage

• Save results generated by expensive vertex/tessellation shader
algorithms for cheap reuse

• Useful when the GPU is used as a co-processor to the CPU. The GPU
can process the geometry, then save the result for the CPU to read back

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

Geometry Shader Stage: Example

• (a) Geometry shader application : Normal Visualization

• (b) Geometry shader application : Layered Rendering

(a) (b)

G3

Geometry Shader Stage: Example

• (a) Geometry shader application : fish crowd simulation

• (b) Geometry shader application : fur simulation

NVIDIA fish crowd simulation
(https://goo.gl/3qg1WW)

NVIDIA fur simulation
(https://goo.gl/xPwgnq)

Vertex Processing

• Vertex, Tessellation and Geometry Shader stages are also
called Vertex Processing

• They all operate on vertices and geometries

• The last active stage of Vertex Processing stages should output
a clip space coordinate to the Rasterizer stage

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

Rasterizer Stage

• Fixed function stage

• Consist of three sub-stages:
1. Vertex Post-Processing Stage

2. Primitive Assembly Stage

3. Rasterization Stage

• Since they are not really separated from one another, and the
hardware implementation may differ from this order, for
convenience we will just discuss the functions they perform

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

Rasterizer Stage: Operations

• Operations performed, in logical order:
1. Face Culling

2. Primitive Culling

3. Primitive Clipping (or Frustum Clipping)

4. Perspective Division (or Homogeneous Division)

5. Viewport Transformation

6. Rasterization

7. Multisampling

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

投影片 98

G3 加㇐下你自己列的例子。
Graphics, 2017/9/15

5/17/2019

18

Rasterizer Stage: Operations

• Face Culling
• Discard a primitive if it’s facing towards or away the camera

• Implement back face culling: for a watertight geometry, it is not possible
to see its “inside”, so back face will never contribute to the final
rendering

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

1

2
3

1

23

Rasterizer Stage: Operations

• Primitive Culling
• Discard a primitive if it’s completely outside of the view volume

• Primitive Clipping (or Frustum Clipping)
• If a primitive is partially inside the view volume, then it is split into

new primitives that reside completely inside

• Clip space coordinate make this process very efficient

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

Do nothing Culling Clipping

Rasterizer Stage: Operations

• Perspective Division (or Homogeneous Division)
• Transform the coordinate from clipping space to NDC

• Covered in the previous lecture

• Viewport Transformation
• Transform the coordinate from NDC to screen space

• Covered in the previous lecture

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

Rasterizer Stage: Operations

• Rasterization
• Convert the geometric data into a regularly sampled representation

that can be written to pixel-based images, or be displayed on pixel-
based screens

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

Rasterizer Stage: Operations

• Multisampling
• A simplified, optimized and hardware-accelerated form of anti-

aliasing algorithm

• We will explain this in a future lecture

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

Rasterizer Stage: APIs

• This stage is mostly configured, but not all, by:
• Primitive Clipping

• glEnable/glDisable(GL_CLIP_DISTANCEi)

• Face Culling & Primitive Culling
• glEnable/glDisable(GL_CULL_FACE)

• glFrontFace

• glCullFace

• Perspective Division
• None, cannot be controlled

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

5/17/2019

19

Rasterizer Stage: APIs

• This stage is mostly configured, but not all, by:
• Viewport Transformation

• glViewport

• glDepthRange

• Rasterization
• glPolygonMode

• glEnable/glDisable(GL_POLYGON_OFFSET)

• glPolygonOffset

• glPointSize

• glLineWidth

• Multisampling
• glEnable/glDisable(GL_MULTISAMPLE)

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

Fragment Shader Stage

• The last programmable stage

• Invoked once for each fragment generated by the rasterizer

• Unaware of neighboring fragments. Runs in parallel

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

Fragment Shader Stage: Operations

• In plain English: decide the color of a pixel

• Operate at a much higher frequency than the previous stages
(1080p=2M pixels)

• Commonly used to add all the details to a rendering

• Perform lighting calculation and texturing operations

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

Fragment Shader Stage : Example

Original Ink painting Oil painting

Pixelize Invert Blur

Fragment Shader Stage : Example

• Fragment shader can control the object’s visibility based on
the distance from camera to simulate the fog effects.

Fragment Shader Stage : Example

Monet, Haystacks

Kitchen

Kitchen / Monet, Haystacks

5/17/2019

20

Per-Sample Processing Stage

• The last stage before a fragment is written to the framebuffer

• Fixed function stage

• Perform three kind of tests:
• Depth Test

• Stencil Test

• Scissor Test

• If a fragment passes all the tests, it will be written to the
framebuffer. If Blending is enabled, blending is performed
before the fragment is written

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

Per-Sample Processing Stage: Operations

• Scissor Test
• Discard the fragments that are outside a user-specified rectangle

• Useful for masking the output to a specific area

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

G6
G7

Per-Sample Processing Stage: Operations

• Stencil Test
• Compare a reference value of incoming fragment with the contents of

the stencil buffer

• The content of the stencil buffer can also be updated dynamically

• Like scissor test, useful for masking the output, but with more
flexibility in algorithm design

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

G6
G7 Per-Sample Processing Stage: Operations

• Depth Test
• Hardware implementation of the classical Z-buffer algorithm [Williams,

1978] with depth buffer to give the scene a correct depth order

• Determines whether an incoming fragment can override or blend with
the contents of the color buffer

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

G8

Per-Sample Processing Stage: Operations

• Blending
• Traditionally used for alpha-transparency rendering

• Blend two color sources with a blending function. Sources and
blending function are configurable

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Vertex
Specification

Input

G8

Per-Sample Processing Stage: APIs

• This stage is mostly configured, but not all, by:
• Depth Test

• glEnable/glDisable(GL_DEPTH_TEST)

• glDepthMask

• glDepthFunc

• Stencil Test
• glEnable/glDisable (GL_STENCIL_TEST)

• glStencilOp

• glStencilFunc

• glStencilMask

• Scissor Test
• glEnable/glDisable (GL_SCISSOR_TEST)

• glScissor

• Blend
• glEnable/glDisable (GL_BLEND)

• glBlendFunc

Vertex
Specification

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterizer
Fragment
Shader

Per-Sample
Processing

Frame
Buffers

Input

投影片 116

G6 這幾個TEST你也有整理，也麻煩你把他們加入。
Graphics, 2017/9/16

G7 Graphics, 2017/9/16

投影片 117

G6 這幾個TEST你也有整理，也麻煩你把他們加入。
Graphics, 2017/9/16

G7 Graphics, 2017/9/16

投影片 118

G8 這幾個TEST你也有整理，也麻煩你把他們加入。
Graphics, 2017/9/16

投影片 119

G8 這幾個TEST你也有整理，也麻煩你把他們加入。
Graphics, 2017/9/16

5/17/2019

21

Input Geometry &
Textures

GPU
Memory

Geometry

Textures

Buffers

Raw Data

Compute
Shader Stage

: Programmable Shader Stages

: Input

: Data Flow

Compute Shader Compute Shader

• Available since OpenGL 4.3

• Compute shader pipeline only has one programmable stage

• There are no predefined input or output in compute shader
stage. However, Compute shaders can read/write buffers and
textures asynchronously, allowing for highly customized,
parallel algorithm designs

• Idea close to CUDA or DirectCompute

• Compute shader is built upon the same foundation as the
rendering pipeline stages, meaning it can benefit from
hardware texture filtering and GLSL intrinsic functions

Compute Shader: Operations

• Compute shaders are becoming increasingly important in
modern rendering algorithms

• Physic-based simulations
• Water surface or cloth simulation
• Particle system simulation
• Audio reverb zone simulation

• Procedural texture generation
• Image processing operations

• Separated 2D convolution (Gaussian blur, …)
• GPGPU operations

• Act as a co-processor to the CPU
• General parallel algorithm designs

Compute Shader: Example

• (a) Compute shader application : water surface simulation

• (b) Compute shader application : particle simulation

(a) (b)

Compute Shader: Operations

• Execute algorithmically general purpose GLSL shaders
• Operate on uniforms, images, and textures.

• Process graphics data in the context of the graphics pipeline
• Easier than interpolating with a compute API IF processing

“close to the pixel”

• Complementary to OpenGL
• Not a full heterogonous (CPU/GPU) programming framework using

full ANSI C

• Standard part of all OpenGL 4.3 Implementations
• Matches DirectX 11 Functionality

David Luebke

To think about:

• What are some possible bottlenecks in system performance of a
graphics/game engine?

• Does it make any difference to sort your geometry front-to-back
or back-to-front when using a depth-buffer?

• Will your textured polygons render faster if MIP-mapping is
enabled or disabled?

• Does the order that you traverse polygons (i.e., issue vertices
using glVertex()) make a difference in performance?

5/17/2019

22

Possible Bottlenecks

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

Rasterizer
Geometry
Processor

Geometry
Storage

CPU

CPU transfer transform raster texture fragment frame
buffer

Vertex Bound Pixel Bound

CPU/Bus
Bound

OpenGL Frame Buffer

Frame
Buffer

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization
Per Fragment

Operations

Texture
Memory

Pixel
Operations

What is Buffers

• Define a buffer by its spatial resolution (n x m) and its depth (or
precision) k, the number of bits/pixel

pixel

OpenGL Frame Buffers

• Color buffers can be displayed
• Front

• Back

• Auxiliary

• Overlay

• Depth

• Accumulation
• High resolution buffer

• Stencil
• Holds masks

Color Buffer

The image that you see on screen.

Depth Buffer

The depth values of pixels

5/17/2019

23

Stencil Buffer

Stencil plays as a mask and indicates which pixels
can be modified

Without stencil With stencil

Accumulation Buffer

• Accumulate information
• Soft Shadows

• Motion Blurs

• Depth of Field

3D 遊戲設計專案

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4d238a7bf&sid=5c5d4d2439990 1/3

Project 1: Trains and Roller Coasters

Overview
In this project, you will create a train that will ride around on a track. When the track leaves the ground
(or is very hilly), the train becomes more like a roller coaster.

Once it becomes a roller coaster, loops, corkscrews, and other things become possible

enu

Home

aculty

tudents

rojects

Research

Games

Others

Courses

http://dgmm.csie.ntust.edu.tw/?
http://dgmm.csie.ntust.edu.tw/?ac1=
http://dgmm.csie.ntust.edu.tw/?ac1=facultylist
http://dgmm.csie.ntust.edu.tw/?ac1=stulist
http://dgmm.csie.ntust.edu.tw/?ac1=resprojlist
http://dgmm.csie.ntust.edu.tw/?ac1=game
http://dgmm.csie.ntust.edu.tw/?ac1=other
http://dgmm.csie.ntust.edu.tw/?ac1=courlist

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4d238a7bf&sid=5c5d4d2439990 2/3

The main purposes of this project is to demonstrate your fundamental knowledge in Computer Graphics
and to give you experience in working with a game engine (Unity, Unreal, or blender). The core of the
project is a program that creates a 3D world, and to allow the user to place a train (or roller coaster)
track in the world. This means that the user needs to be able to see and manipulate a set of control
points that define a curve to represent the track, and that you can draw the track and animate the train
moving along the track. It will also force you to use the game engine to create a fundamental interactive
framework and proper user interfaces. The framework will be similar to the framework provided for
Introduction to Computer Graphics and you can use it as a reference.

Requirements
Basically in this project you will need to:

Create a framework as this one in your chosen game engine.
1. Provide a user interface to look around the world, as well as providing a "top down" view.
2. You must have a "ground" (so the track isn't just in space).
3. Provide a user interface that allows control points to be added, removed, or repositioned.
4. Allow for the control points to be saved and loaded from text files in the format used by the

example solution.
5. Provide lighting.
6. Allow things to be animated (have a switch that allows the train to start/stop), as well as

allowing for manually moving the train forward and backwards.
7. You should have a slider (or some control) that allows for the speed of the train to be adjusted

(how far the train goes on each step, not the number of steps per second).
Add the basic functionality:

Draw a track based on the control points.
1. Rail ties: ties are the cross pieces on railroad tracks. Getting them right (uniformly spaced)

requires good arc-length parameterization. In the example code, you can turn the arc-
length parameterization on and off to see the difference.

2. Arc-length parameterization: Having your train move at a constant velocity (rather than
moving at a constant change of parameter value) makes things better. Implementing this is
an important step towards many other advanced features. You should allow arc-length
parameterization to be switched on and off to emphasize the difference, you should also
provide a speed control.

3. Control the orientation of track: the simple schemes for orienting the train break down in
3D - in particular, when there are loops. Make it so that your train consistently moves along
the track (so its under the track at the top of a loop).

One good way to provide for proper orientations is to allow the user to control which
direction is "up" at points along the curve. This allows you to do things like corkscrew
roller coasters. The sample solution does this (its why the framework has an
orientation vector for each control point). Note that the train still needs to face forward,
the given orientation is just a hint as to which way up should be.

Simple physics: Roller coasters do not go at constant velocities - they speed up and slow
down. Simulating this (in a simple way) is really easy once you have arc-length
parameterization. Remember that Kinetic Energy - Potential Energy should remain constant (or
decrease based on friction). This lets you compure what the velocity should be based on how
high the roller coaster is. Even Better is to have "Roller Coaster Physics" - the roller coaster is
pulled up the first hill at a constant velocity, and "dropped " where it goes around the track in
"free fall." You could even have it stop at the platform to pick up people. Note: you should
implement arc-length first. Once you get it right it is much easier.
Draw a train on that track.

1. Have the train oriented correctly on the track.
2. Have a rider: Little people who put their hands up as they accelerate down the hill are a

cool addition. (I don't know why putting your hands up makes roller coasters more fun, but
it does). The hands going up when the train goes down hill is a requirement.

3. Headlight for the Train: Have the train have a headlight that actually lights up the objects in
front of it. This is actually very tricky since it requires local lighting, which isn't directly
supported.

4. Multiple cars
5. Have Real Train Wheels: Real trains have wheels at the front and back that are both on

the track and that swivel relative to the train itself. If you make real train wheels, you'll need
arc-length parameterization to keep the front and rear wheels the right distances apart
(make sure to draw them so we can see them swiveling when the train goes around a tight
turn).

http://dgmm.csie.ntust.edu.tw/?uid=5cddeef6a57d7
http://dgmm.csie.ntust.edu.tw/?uid=5cddeef6a57d7

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4d238a7bf&sid=5c5d4d2439990 3/3

In the sample solution, the wheels are trucked (they turn independently), but each car still
rotates around its center (so its as if they are floating above the wheels). You can do better
than that.

Add advanced features
1. Add shadow: shadow gives the user sense of space. It is important to add shadow in the

interactive graphics applications.
2. Non-Flat Terrain for the ground: This is mainly interesting if you have the train track follow the

ground (maybe with tressles or bridges if the ground is too bumpy).
3. Have the train make smoke: Steam trains are the coolest trains, even if they are being a roller

coaster. Having some kind of smoke coming from the train's smoke stack would be really neat.
Animate the smoke (for example, have "balls of smoke" that move upward and dissipate).

4. Add sky with sky box, sky plane, sky sphere, and etc.
5. Load in models created by blender, Maya, 3DMax, and other 3D tools.
6. Scenery: having other (non-moving) objects in the world gives you something to look at when

you ride the train.
7. 3 Shaders: Graphics Processing Unit(GPU) has become very important aspect in graphics. We

would like to explore the usage of them such as environment map, particle simulation, water
simulation, and so on. Everyone has to write 3 shaders

Grading Criterion
This project is similar to those in Project 3 and Project 4 in Introduction to Computer
Graphics. Therefore, the score is the advance features in Project 3 and Project4 without the water feature (we will implement

it in P2). Here is the grading sheet.

What to handin
a readme.txt which should explain the following:

1. A list of all the features that you have added, including a description, and an explanation of how
you know that it works correctly.

2. A discussion of any important, technical details (like how you compute the coordinate system
for the train, or what method you use to compute the arc length)

3. Anything else we should know to compile and use your progra
3 screen shots
Source code and media information
A 1~2 minutes video

Copyright © 2019 NTUST CSIE Computer Graphics Lab. All right reserved.

http://dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=52dc82d5a7d94&sid=52dc831c5556e
http://dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=52dc82d7ef2b7&sid=52dc834a1fc77

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6c96292&sid=5c5d4f6cb0ae7 1/8

Project 2: Ray Tracer

Introduction

In computer graphics, ray tracing is a technique for generating an image by tracing the path of light
through pixels in an image plane and simulating the effects of its encounters with virtual objects. The
technique is capable of producing a very high degree of visual realism, usually higher than that of
typical scanline rendering methods, but at a greater computational cost. This makes ray tracing best
suited for applications where the image can be rendered slowly ahead of time, such as in still images
and film and television visual effects, and more poorly suited for real-time applications like video
games where speed is critical. Ray tracing is capable of simulating a wide variety of optical effects,
such as reflection and refraction, scattering, and dispersion phenomena (such as chromatic
aberration).
In this project, you will build a program called Ray that will generate ray-traced images of complex
scenes. The ray tracer should trace rays recursively using the Whitted illumination model.

enu

Home

aculty

tudents

rojects

Research

Games

Others

Courses

http://dgmm.csie.ntust.edu.tw/?
http://dgmm.csie.ntust.edu.tw/?ac1=
http://dgmm.csie.ntust.edu.tw/?ac1=facultylist
http://dgmm.csie.ntust.edu.tw/?ac1=stulist
http://dgmm.csie.ntust.edu.tw/?ac1=resprojlist
http://dgmm.csie.ntust.edu.tw/?ac1=game
http://dgmm.csie.ntust.edu.tw/?ac1=other
http://dgmm.csie.ntust.edu.tw/?ac1=courlist

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6c96292&sid=5c5d4f6cb0ae7 2/8

Algorithm Overview
Optical ray tracing describes a method for producing visual images constructed in 3D computer
graphics environments, with more photorealism than either ray casting or scanline rendering
techniques. It works by tracing a path from an imaginary eye through each pixel in a virtual screen,
and calculating the color of the object visible through it.

Scenes in ray tracing are described mathematically by a programmer or by a visual artist (typically
using intermediary tools). Scenes may also incorporate data from images and models captured by
means such as digital photography.

Typically, each ray must be tested for intersection with some subset of all the objects in the scene.
Once the nearest object has been identified, the algorithm will estimate the incoming light at the point
of intersection, examine the material properties of the object, and combine this information to calculate
the final color of the pixel. Certain illumination algorithms and reflective or translucent materials may
require more rays to be re-cast into the scene.

It may at first seem counterintuitive or "backwards" to send rays away from the camera, rather than
into it (as actual light does in reality), but doing so is many orders of magnitude more efficient. Since
the overwhelming majority of light rays from a given light source do not make it directly into the
viewer's eye, a "forward" simulation could potentially waste a tremendous amount of computation on
light paths that are never recorded.

Therefore, the shortcut taken in raytracing is to presuppose that a given ray intersects the view frame.

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6c96292&sid=5c5d4f6cb0ae7 3/8

After either a maximum number of reflections or a ray traveling a certain distance without intersection,
the ray ceases to travel and the pixel's value is updated.

Pros and Cons
Advantages over other rendering methods:

Ray tracing's popularity stems from its basis in a realistic simulation of lighting over other
rendering methods (such as scanline rendering or ray casting). Effects such as reflections
and shadows, which are difficult to simulate using other algorithms, are a natural result of the
ray tracing algorithm. The computational independence of each ray makes ray tracing
amenable to parallelization.

Disadvantages:
A serious disadvantage of ray tracing is performance (while it can in theory be faster than
traditional scanline rendering depending on scene complexity vs. number of pixels on-
screen). Scanline algorithms and other algorithms use data coherence to share computations
between pixels, while ray tracing normally starts the process anew, treating each eye ray
separately. However, this separation offers other advantages, such as the ability to shoot
more rays as needed to perform spatial anti-aliasing and improve image quality where
needed.
Although it does handle interreflection and optical effects such as refraction accurately,
traditional ray tracing is also not necessarily photorealistic. True photorealism occurs when
the rendering equation is closely approximated or fully implemented. Implementing the
rendering equation gives true photorealism, as the equation describes every physical effect
of light flow. However, this is usually infeasible given the computing resources required.
The realism of all rendering methods can be evaluated as an approximation to the equation.
Ray tracing, if it is limited to Whitted's algorithm, is not necessarily the most realistic.
Methods that trace rays, but include additional techniques (photon mapping, path tracing),
give far more accurate simulation of real-world lighting.

The Basic Task

 for every pixel {

cast a ray from the eye

for every object in the scene {

find intersections with the ray keep it if closest

}

compute color at the intersection point

}

Required Functionality

We'll describe these requirements in more detail afterwards:

https://en.wikipedia.org/wiki/Computer_graphics_lighting
https://en.wikipedia.org/wiki/Shadow
https://en.wikipedia.org/wiki/Parallelization
https://en.wikipedia.org/wiki/Spatial_anti-aliasing
https://en.wikipedia.org/wiki/Rendering_equation
https://en.wikipedia.org/wiki/Photon_mapping
https://en.wikipedia.org/wiki/Path_tracing

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6c96292&sid=5c5d4f6cb0ae7 4/8

1. Parse in the scene, material, light and other informations. (5%)
2. Fast local rendering with OpenGL. (5%)
3. Generate the tracing rays from the camera. (5%)
4. Use the intersection mechanism in Engine for ray-object intersection computation. (5%)
5. Implement the Whitted illumination model, which includes Phong shading (emissive, ambient,

diffuse, and specular terms) as well as reflection and refraction terms. You only need to handle
directional and point light sources, i.e. no area lights, but you should be able to handle multiple
lights. (20%)

6. Implement Phong interpolation of normals on triangle meshes. (10%)
7. Implement anti-aliasing. Regular super-sampling is acceptable, more advanced anti-aliasing will

be considered as an extension. (10%)
8. Implement data structures that speed up the intersection computations in large scenes. There will

be a contest at the end of the project to determine the team with the fastest ray tracer. (10%)
Notes on Whitted's illumination model
The first three terms in Whitted's model will require you to trace rays towards each light, and the
last two will require you to recursively trace reflected and refracted rays. (Notice that the number
of reflected and refracted rays that will be calculated is limited by the "depth" setting in the ray
tracer. This means that to see reflections and refraction, you must set the depth to be greater than
zero!)
When tracing rays toward lights, you should look for intersections with objects, thereby rendering
shadows. If you intersect a semi-transparent object, you should attenuate the light, thereby
rendering partial (color-filtered) shadows, but you may ignore refraction of the light source.
The skeleton code doesn't implement Phong interpolation of normals. You need to add code for
this (only for meshes with per-vertex normals.)
Here is a document that lists equations that will come in handy when writing your shading and ray
tracing algorithms.
Anti-aliasing
Once you've implemented the shading model and can generate images, you will notice that the
images you generated are filled with "jaggies". You should implement an anti-aliasing technique to
smooth these rough edges. In particular, you are required to perform super-sampling and
averaging down. You should provide a slider which allows the user to control the number of
samples per pixel (1, 4, 9 or 16 samples). You need only implement a box filter for the averaging
down step. More sophisticated anti-aliasing methods are left as bells and whistles below.
Acclerated ray-surface intersection
The goal of this portion of the assignment is to speed up the ray-surface intersection module in
your ray tracer. In particular, we want you to improve the running time of the program when ray
tracing complex scenes containing large numbers of objects (they are usually triangles). There
are two basic approaches to do this:

1. Specialize and optimize the ray-object intersection test to run as fast as possible.
2. Add data structures that speed the intersection query when there are many objects.

Most of your effort should be spent on approach 2, i.e. reducing the number of ray-object
intersection tests. You are free to experiment with any of the acceleration schemes described in
Chapter 6, ''A Survey of Ray Tracing Acceleration Techniques,'' of Glassner's book. Of course,
you are also free to invent new acceleration methods.
Make sure that you design your acceleration module so that it is able to handle the current set of
geometric primitives - that is, triangles spheres, squares, boxes, and cones.
The sample scenes include several simple scenes and three complex test scenes: trimesh1,
trimesh2, and trimesh3. You will notice that trimesh1 has per-vertex normals and materials, and
trimesh2 has per-vertex materials but not normals. Per-vertex normals and materials imply
interpolation of these quantities at the current ray-triangle intersection point (using barycentric
coordinates).

What to hand in?

All your hand-in must be put in a directory with your student ID and the following is the list of hand-in
files under the directory.

Program and source: As usual, you must hand in everything needed to build and run your
program, including all texture files and other resources.
Gallery: Please put a few JPG pictures of the rendering results at least three. Please name the
pictures ID-X.jpg (where X is a number).
Read-me.txt:

Instructions on how to use your program (in case we want to use it when you're not around)

http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/equations.pdf

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6c96292&sid=5c5d4f6cb0ae7 5/8

Descriptions of what your program does to meet all of the minimum requirements.
Technical.txt:

The report could contain a description of this project, what you have learned from this project,
description of the algorithm you implemented, implementation details, results (either good or
bad), and what extensions you have implemented.

Extra Effects
Here are some examples of effects you can get with ray tracing. Currently none of these were created
from past students' ray tracers.

Implement an adaptive termination criterion for tracing rays, based on ray contribution. Control
the adaptation threshold with a slider.
Implement stochastic (jittered) supersampling. See Glassner, Chapter 5, Section 4.1 - 4.2 and the
first 4 pages of Section 7

 Modify shadow attenuation to use Beer's law, so that the thicker objects cast darker shadows
than thinner ones with the same transparency constant. (See Shirley p. 214.)

 Include a Fresnel term so that the amount of reflected and refracted light at a transparent surface
depend on the angle of incidence and index of refraction. (See Shirley p. 214.)

 Add a menu option that lets you specify a background image to replace the environment's
ambient color during the rendering. That is, any ray that goes off into infinity behind the scene
should return a color from the loaded image, instead of just black. The background should
appear as the backplane of the rendered image with suitable reflections and refractions to it.

 Deal with overlapping objects intelligently. In class, we discussed how to handle refraction for
non-overlapping objects in air. This approach breaks down when objects intersect or are wholly
contained inside other objects. Add support to the refraction code for detecting this and handling it
in a more realistic fashion. Note, however, that in the real world, objects can't coexist in the same
place at the same time. You will have to make assumptions as to how to choose the index of
refraction in the overlapping space. Make those assumptions clear when demonstrating the
results.

 Implement spot lights.
 Implement antialiasing by adaptive supersampling, as described in Glassner, Chapter 1, Section

4.5 and Figure 19 or in Foley, et al., 15.10.4. For full credit, you must show some sort of
visualization of the sampling pattern that results. For example, you could create another image
where each pixel is given an intensity proportional to the number of rays used to calculate the
color of the corresponding pixel in the ray traced image. Implementing this bell/whistle is a big
win -- nice antialiasing at low cost.

 Add some new types of geometry to the ray tracer. Consider implementing torii or general
quadrics. Many other objects are possible here.

 Implement more versatile lighting controls, such as the Warn model described in Foley 16.1.5.
This allows you to do things like control the shape of the projected light.

 Implement stochastic or distributed ray tracing to produce one or more or the following
effects: depth of field, soft shadows, motion blur, glossy reflection (See Glassner, chapter 5, or
Foley, et al., 16.12.4).

 Add texture mapping support to the program. To get full credit for this, you must add uv
coordinate mapping to all the built-in primitives (sphere, box, cylinder, cone) except trimeshes.
The square object already has coordinate mapping implemented for your reference. The most
basic kind of texture mapping is to apply the map to the diffuse color of a surface. But many other
parameters can be mapped. Reflected color can be mapped to create the sense of a surrounding
environment. Transparency can be mapped to create holes in objects. Additional (variable) extra
credit will be given for such additional mappings. The basis for this bell is built into the skeleton,
and the parser already handles the types of mapping mentioned above. Additional credit will be
awarded for quality implementation of texture mapping on general trimeshes.

 Implement bump mapping (Watt 8.4; Foley, et al. 16.3.3). Check this out!
 Implement solid textures or some other form of procedural texture mapping, as described in

Foley, et al., 20.1.2 and 20.8.3. Solid textures are a way to easily generate a semi-random texture
like wood grain or marble.

 Extend the ray-tracer to create Single Image Random Dot Stereograms (SIRDS). Click here to
read a paper on how to make them. Also check out this page of examples. Or, create 3D images
like this one, for viewing with red-blue glasses.

 Implement 3D fractals and extend the .ray file format to provide support for these objects. Note
that you are not allowed to "fake" this by just drawing a plain old 2D fractal image, such as the
usual Mandelbrot Set. Similarly, you are not allowed to cheat by making a .ray file that arranges
objects in a fractal pattern, like the sier.ray test file. You must raytrace an actual 3D fractal, and

http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/examples/ray/index.html
http://www.siggraph.org/education/materials/HyperGraph/mapping/bumpmap.htm
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/extra/SIRDS-paper.ps
http://www.nottingham.ac.uk/~etzpc/gif.html
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/examples/redblue.jpg
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/extra/format.html

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6c96292&sid=5c5d4f6cb0ae7 6/8

your extension to the .ray file format must allow you to control the resulting object in some
interesting way, such as choosing different fractal algorithms or modifying the base pattern used
to produce the fractal. Here are two really good examples of raytraced fractals that were
produced by students during a previous quarter: Example 1, Example 2. And here are a couple
more interesting fractal objects: Example 3, Example 4

 Implement 4D quaternion fractals and extend the .ray file format to provide support for these
objects. These types of fractals are generated by using a generalization of complex numbers
called quaternions. What makes the fractal really interesting is that it is actually a 4D object. This
is a problem because we can only perceive three spatial dimensions, not four. In order to render a
3D image on the computer screen, one must "slice" the 4D object with a three dimensional
hyperplane. Then the points plotted on the screen are all the points that are in the intersection of
the hyperplane and the fractal. Your extension to the .ray file format must allow you to control the
resulting object in some interesting way, such as choosing different generating equations,
changing the slicing plane, or modifying the surface attributes of the fractal. Here are a few
examples, which were created using the POV-Ray raytracer (yes, POV-Ray has quaternion
fractals built in!): Example 1, Example 2,Example 3, Example 4. And, this is an excellent example
from a previous quarter. To get started, visit this web page to brush up on your quaternion math.
Then go to this site to learn about the theory behind these fractals. Then, you can take a look
at this page for a discussion of how a raytracer can perform intersection calculations.

 Implement a more realistic shading model. Credit will vary depending on the sophistication of the
model. A simple model factors in the Fresnel term to compute the amount of light reflected and
transmitted at a perfect dielectric (e.g., glass). A more complex model incorporates the notion of a
microfacet distribution to broaden the specular highlight. Accounting for the color dependence in
the Fresnel term permits a more metallic appearance. Even better, include anisotropic reflections
for a plane with parallel grains or a sphere with grains that follow the lines of latitude or longitude.
Sources: Shirley, Chapter 24, Watt, Chapter 7, Foley et al, Section 16.7; Glassner, Chapter 4,
Section 4; Ward's SIGGRAPH '92 paper; Schlick's Eurographics Rendering Workshop '93 paper.
This all sounds kind of complex, and the physics behind it is. But the coding doesn't have to be. It
can be worthwhile to look up one of these alternate models, since they do a much better job at
surface shading. Be sure to demo the results in a way that makes the value added clear.
Theoretically, you could also invent new shading models. For instance, you could implement
a less realistic model! Could you implement a shading model that produces something that looks
like cel animation? Variable extra credit will be given for these "alternate" shading models. Links
to ideas: Comic Book Rendering. Note that you must still implement the Phong model.
Implement CSG, constructive solid geometry. This extension allows you to create very interesting
models. See page 108 of Glassner for some implementation suggestions. An excellent example
of CSG was built by a grad student here in the grad graphics course.
Add a particle systems simulation and renderer (Foley 20.5, Watt 17.7, or see instructor for more
pointers).

 Implement caustics by tracing rays from the light source and depositing energy in texture maps
(a.k.a., illumination maps, in this case). Caustics are variations in light intensity caused by
refractive focusing--everything from simple magnifying-glass points to the shifting patterns on the
bottom of a swimming pool. A paper discussing some methods. 2 bells each for refractive and
reflective caustics. (Note: caustics can be modeled without illumination maps by doing "photon
mapping", a monster bell described below.) Here is a really good example of caustics that were
produced by two students during a previous quarter: Example

Advance Technology
There are innumerable ways to extend a ray tracer. Think about all the visual phenomena in the real
world. The look and shape of cloth. The texture of hair. The look of frost on a window. Dappled
sunlight seen through the leaves of a tree. Fire. Rain. The look of things underwater. Prisms. Do you
have an idea of how to simulate this phenomenon? Better yet, how can you fake it but get something
that looks just as good? You are encouraged to dream up other features you'd like to add to the base
ray tracer. Obviously, any such extensions will receive variable extra credit depending on merit (that is,
coolness!). Feel free to discuss ideas with the course staff before (and while) proceeding!

Sub-Surface Scattering

http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/examples/alice.jpg
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/examples/ddewey.jpg
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/examples/menger.jpg
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/examples/mengerold.jpg
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/extra/format.html
http://www.povray.org/
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/examples/quat1.jpg
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/examples/quat2.jpg
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/examples/quat3.jpg
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/examples/quat4.jpg
http://www.cs.washington.edu/education/courses/cse457/04sp/projects/trace/vote/omicron-tortman/index2.html
http://local.wasp.uwa.edu.au/~pbourke/other/quaternions/
http://astronomy.swin.edu.au/~pbourke/fractals/quatjulia/index.html
http://www.devmaster.net/forums/showthread.php?t=4448
http://www.cc.gatech.edu/grads/r/Marcia.Riley/comicbook.html
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/examples/csg.jpg
http://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/extra/Backward.pdf
http://www.cs.washington.edu/education/courses/cse457/CurrentQtr/projects/trace/examples/caustics.jpg

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6c96292&sid=5c5d4f6cb0ae7 7/8

The trace program assigns colors to pixels by simulating a ray of light that travels, hits a
surface, and then leaves the surface at the same position. This is good when it comes to
modeling a material that is metallic or mirror-like, but fails for translucent materials, or
materials where light is scattered beneath the surface (such as skin, milk, plants...).
Check this paper out to learn more.

Metropolis Light Transport

Not all rays are created equal. Some light rays contribute more to the image than others,
depending on what they reflect off of or pass through on the route to the eye. Ideally, we'd like to
trace the rays that have the largest effect on the image, and ignore the others. The problem is:
how do you know which rays contribute most? Metropolis light transport solves this problem by
randomly searching for "good" rays. Once those rays are found, they are mutated to produce
others that are similar in the hope that they will also be good. The approach uses statistical
sampling techniques to make this work. Here's some information on it, and a neat picture.
Photon Mapping

 Photon mapping is a powerful variation of ray tracing that adds speed, accuracy and versatility.
It's a two-pass method: in the first pass photon maps are created by emitting packets of energy
photons) from the light sources and storing these as they hit surfaces within the scene. The scene
is then rendered using a distribution ray tracing algorithm optimized by using the information in
the photon maps. It produces some amazing pictures. Here's some information on it.

Reference
General

1. An Improved Illumination Model for Shaded Display, T. Whitted, CACM, 1980, pp 343-349
2. An Introduction to Ray Tracing, Andrew S. Glassner. (Chap. 6 for acceleration)

Space Subdivision

http://graphics.stanford.edu/~henrik/papers/bssrdf/
http://graphics.stanford.edu/papers/metro/
http://graphics.stanford.edu/papers/metro/fig7b.jpg
http://graphics.stanford.edu/~henrik/papers/ewr7/
http://courses.cs.washington.edu/courses/cse557/08wi/info/books.html

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6c96292&sid=5c5d4f6cb0ae7 8/8

1. Ray Tracing with the BSP Tree, K Sung & P. Shirley. Graphics Gems III.
2. ARTS: Accelerated Ray-Tracing System, A. Fujimoto et. al. CG&A April 1986, pp 16-25.
3. A Fast Voxel Traversal Algorithm for Ray Tracing, J. Amanatides & A. Woo. Eurographics'87,

pp 3-9
4. Faster Ray Tracing Using Adaptive Grids, K. Klimaszewski & T. Sederberg. CG&A Jan. 1997,

pp 42-51 (It is claimed to be the fastest algorithm so far.)
Hierarchical Bounding Volume

1. Automatic Creation of Object Hierarchies for Ray Tracing, J. Goldsmith & J. Salmon. CG&A
May 1987, pp 14-20.

2. Efficiency Issues for Ray Tracing, B. Smits. Journal of Graphics Tools, Vol. 3, No. 2, pp. 1-14,
1998.

3. Ray Tracing News, Vol. 10, No. 3.
Tips

1. Fast Ray-Box Intersection, A. Wu Graphics Gems.
2. Improved Ray Tagging for Voxel-Based Ray Tracing, D. Kirk & J. Arvo. Graphics Gems. II
3. Rectangular Bounding Volumes for Popular Primitives, B. Trumbore. Graphics Gems. III
4. A Linear-Time Simple Bounding Volumn Algorithm, X. Wu. Graphics Gems. III
5. A Fast Alternative to Phong's Specular Model, Christophe Schlick Graphics Gems IV.
6. Voxel Traversal along a 3D Line, D. Cohen. Graphics Gems. IV.
7. Faster Refraction Formula, and Transmission Color Filtering, Ray Tracing News, Vol. 10, No.

1.

Copyright © 2019 NTUST CSIE Computer Graphics Lab. All right reserved.

http://www.acm.org/tog/GraphicsGems/
http://www.cs.utah.edu/vissim/papers/fastRT/
http://www.acm.org/tog/resources/RTNews/html/index.html
http://www.acm.org/tog/GraphicsGems/
http://www.acm.org/tog/GraphicsGems/
http://www.acm.org/tog/GraphicsGems/
http://www.acm.org/tog/GraphicsGems/
http://www.acm.org/tog/GraphicsGems/
http://www.acm.org/tog/GraphicsGems/
http://www.acm.org/tog/resources/RTNews/html/index.html

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6ed9ef6&sid=5c5d4f6eede1a 1/7

Project 3: Incremental Instant Radiosity
Implementation

Introduction

Instant radiosity is important techniques for real-time global illuminatio which is a fundamental
procedure for instant rendering from the radiance equation. Operating directly on the textured scene
description, the very efficient and simple algorithm produces photorealistic images without any finite
element kernel or solution discretization of the underlying integral equation. However, its efficiency is
still limited. In addition to regenerating all point light sources, incremental instant radiosity is porposed
for rendering single-bounce indirect illumination in real time on currently available graphics hardware.
The method is based on the instant radiosity algorithm, where virtual point lights (VPLs) are generated
by casting rays from the primary light source. Hardware shadow maps are then employed for
determining the indirect illumination from the VPLs. Our main contribution is an algorithm for reusing
the VPLs and incrementally maintaining their good distribution. As a result, only a few shadow maps
need to be rendered per frame as long as the motion of the primary light source is reasonably smooth.
This yields real-time frame rates even when hundreds of VPLs are used.

Simple Algorithm Overview
Instant radiosity process: For a full description of the algorithm, see the original paper.... However,
here is a (very) brief overview. At runtime, a number of photons are selected from the lightsources to
be cast into the scene. In addition, the mean reflectivity r of the scene is calculated. Initially there
are N photons. For each photon, the scene is rendered, placing a point light source at the origin of the
photon. Then, rN of these photons are cast into the scene. When a photon hits a surface, it is
attenuated by the diffuse component of that surface. Then the scene is rendered again, with the point

lightsource appropriately moved. r2N of the original points continue on to a second bounce.

Menu

Home

Faculty

Students

Projects

Research

Games

Others

Courses

http://dgmm.csie.ntust.edu.tw/?
http://dgmm.csie.ntust.edu.tw/?ac1=
http://dgmm.csie.ntust.edu.tw/?ac1=facultylist
http://dgmm.csie.ntust.edu.tw/?ac1=stulist
http://dgmm.csie.ntust.edu.tw/?ac1=resprojlist
http://dgmm.csie.ntust.edu.tw/?ac1=game
http://dgmm.csie.ntust.edu.tw/?ac1=other
http://dgmm.csie.ntust.edu.tw/?ac1=courlist

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6ed9ef6&sid=5c5d4f6eede1a 2/7

The process is repeated until all of the paths are complete.

In essence, this algorithm is generating an increasingly accurate approximation of the average
radiance for every point in the scene with the rendering pass.

Incremental process:

You must first justistify the existence of each VPLs because the generation rays may be occluded due
to the movement of the light sources and objects. You must remove all invalid VPLs. You must also
adjust the contribution of valid VPLs. Furthermore, you must increase the VPLs to the desired
numbers. Finally, you render the scene with all existing VPLs.

Pros and Cons
The advantages and disadvantages of the incremental instant radiosity is as follows:
Significant advantages:

Can use OpenGL hardware to decrease rendering time
Computed solution can be displayed directly
Low memory requirements, since it works in image space rather than creating matrix elements
Algorithm can be extended to allow specular surfaces
Radience contribution from textures is directly computed

Disadvantages:
View dependent (although Keller does present a method of generating walk-throughs in the
paper)
This method is not terribly accurate, it generates nice pictures, but should not be used for
predictive results.

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6ed9ef6&sid=5c5d4f6eede1a 3/7

Final output quality is dependant on hardware capabilities. For instance, the accumulation buffer
needs to be fairly deep to allow large numbers of images to be composited.
Doesn't work as well on scenes lit primarily by indirect lighting. Since it uses a quasi-random walk
to distribute photons, several hundred frames may be required to get photons to arrive where they
are needed.

The Basic Task
Radiosity is a global illumination algorithm that handles diffuse interreflections between surfaces.

Instant Radiosity uses a Quasi-Monte Carlo approach to solve this integral and creates point light
sources at each bounce for rays cast from the light source. If the light sources and resulting bounces
are sampled adequately, this yields a good approximation of the global lighting in the scene. The core
algorithm (with indicated modifications)is as follows:

Required Functionalities
1. Use P1's parser to parse in the scene, material, light and other informations.
2. Fast local rendering with OpenGL.
3. Shoot out light rays from light sources to generate VPLs. (5%)
4. Visualize these VPLs with OpenGL. (5%)
5. Generate a shadow map for each VPL. (10%)
6. Rendering the scene by raserizing all scene triangles by shading with all VPLs with their shadow

map. (10%)

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6ed9ef6&sid=5c5d4f6eede1a 4/7

7. Dynamics updating the characteristics of VPLs with incremenatl instant radiosity. (25%)
1. Remove invalid VPLs.
2. Adjust valid VPLs.
3. Add new VPLs.

8. Acceleration with KD-tree or BVH (15%)

What to Hand in
All your hand-in must be put in a directory with your student ID and the following is the list of hand-in
files under the directory.

Program and source: As usual, you must hand in everything needed to build and run your
program, including all texture files and other resources.
Gallery: Please put a few JPG pictures of the rendering results at least three. Please name the
pictures ID-X.jpg (where X is a number).
Read-me.txt:

Instructions on how to use your program (in case we want to use it when you're not around)
Descriptions of what your program does to meet all of the minimum requirements.

Technical.txt:
The report could contain a description of this project, what you have learned from this project,
description of the algorithm you implemented, implementation details, results (either good or
bad), and what extensions you have implemented.

Advanced Technologies
Sampling on area lights
Sampling is used to approximate an integral of a function as the average of the function evaluated
at a set of points. Mathematically:

If Xi = i/N, the sampling is rectangular. If Xi is pseudo random or random, we call it as Monte
Carlo sampling. If the sequence Xi has a low discrepancy, we term it as Quasi-Monte Carlo
sampling. Loosely speaking, low discrepancy implies that a graphical representation of the
sequence does not have regions of unequal sample density. For instance,consider the images
below: the image to the left has low discrepancy.

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6ed9ef6&sid=5c5d4f6eede1a 5/7

1. Halton sampling is a Quasi Monte Carlo sampling technique that is deterministic. In 2D, it
uses pairs of numbers generated from Halton sequences. These sequences are based on a
prime number and can be constructed as follows: Pick a prime P and the number of desired
samples N. Divide the interval [0,1] in this fashion: 1/p, 1/p^2, 2/p^2, ... p^2/p^2, 1/p^3 .. till N
unique fractions are created. To generate a sample in 2D, pick primes P, Q ,generate the
corresponding sequences and pair the numbers. It is recommended that the first 20 samples
are discarded for higher primes due to a high correlation between those pairs.

2. Poisson Disk Sampling is a form of Poisson sampling where samples are guaranteed to be
separated by a specified distance (radius). There are numerous techniques to generate
Poisson Disk Samples efficiently such as [8] and [9]. However, for a low number of samples,
we used the Dart Throwing technique and cache results. To do this, we generate points and
discard those that do not meet the radius criterion. This process is continued till N points are
reached. In our implementation, we create different sets of samples such that the same set is
used for a specific bounce. We believe that this is similar to the approach taken in the original
paper where each reflection uses samples based on a set of primes (2j+2, 2j+3) where j is
the reflection count.

 3. Picking the right sampling is the key to getting impressive results using IR. Sampling is used
in two areas in this project: to pick points on the light source, and to choose direction to shoot
rays from the selected point. Each of these requires a mapping from samples on a unit
square to those on triangles or on hemispheres. Fortunately, these are described in Graphics
Gems III (relevant page available on Google books). These samples need to be weighted
based on the area of triangle. Further, there are other technical considerations that affect
scene independent implementations. For instance, increasing the number of samples per
light source will result in a brighter scene unless the intensity of the original samples are
weighted accordingly. Similarly, in open environments,the intensity of each light needs to be
attenuated by the total number of created lights (and not estimated hits).

 Lightcuts:

http://books.google.com/books?id=xmW_u3mQLmQC&pg=PR20&lpg=PR20&dq=graphics+gems+3&source=web&ots=Z415ERPbFj&sig=oc_2GOLc2Pe9TuFtNfMsh_QocQg#PPA81,M1
http://www.cs.cornell.edu/projects/lightcuts/

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6ed9ef6&sid=5c5d4f6eede1a 6/7

Lightcuts is a scalable framework for computing realistic illumination. It handles arbitrary
geometry, non-diffuse materials, and illumination from a wide variety of sources including
point lights, area lights, HDR environment maps, sun/sky models, and indirect illumination. At
its core is a new algorithm for accurately approximating illumination from many point lights
with a strongly sublinear cost. We show how a group of lights can be cheaply approximated
while bounding the maximum approximation error. A binary light tree and perceptual metric
are then used to adaptively partition the lights into groups to control the error vs. cost
tradeoff.
We also introduce reconstruction cuts that exploit spatial coherence to accelerate the
generation of anti-aliased images with complex illumination. Results are demonstrated for
five complex scenes and show that lightcuts can accurately approximate hundreds of
thousands of point lights using only a few hundred shadow rays. Reconstruction cuts can
reduce the number of shadow rays to tens.

Many light

Renndering complex scenes with indirect illumination, high dynamic range environment lighting,
and many direct light sources remains a challenging problem. Prior work has shown that all these
effects can be approximated by many point lights. This paper presents a scalable solution to the
many-light problem suitable for a GPU implementation. We view the problem as a large matrix of
samplelight interactions; the ideal final image is the sum of the matrix columns. We propose an
algorithm for approximating this sum by sampling entire rows and columns of the matrix on the
GPU using shadow mapping. The key observation is that the inherent structure of the transfer
matrix can be revealed by sampling just a small number of rows and columns. Our prototype
implementation can compute the light transfer within a few seconds for scenes with indirect and
environment illumination, area lights, complex geometry and arbitrary shaders. We believe this
approach can be very useful for rapid previewing in applications like cinematic and architectural
lighting design.

Reference
[1] Keller, Alexander, "Instant Radiosity", Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques, July, 1997
[2] Samuli Laine, Hannu Saransaari, Janne Kontkanen, Jaakko Lehtinen, and Timo Aila, "Incremental
Instant Radiosity for Real-Time Indirect Illumination"

 in, "Proc. EGSR 2007", June 2007

Results

https://www.cs.cornell.edu/~kb/projects/rowcolumnSampling/

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f6ed9ef6&sid=5c5d4f6eede1a 7/7

劉益銓, Incremental Instant Radiosity Implementation – 劉益銓

Detail

林德潔, Incremental Instant Radiosity Implementation -- 林德潔

Detail

呂仁傑, Incremental Instant Radiosity Implementation -- 呂仁傑

Detail

Hong-Wen Huang, Incremental Instant Radiosity Implementation -- 黃弘文

Detail

Copyright © 2019 NTUST CSIE Computer Graphics Lab. All right reserved.

http://dgmm.csie.ntust.edu.tw/?ac1=stuprojdetail&id=5a5ebdf17518c
http://dgmm.csie.ntust.edu.tw/?ac1=stuprojdetail&id=5a5ec43bcabe6
http://dgmm.csie.ntust.edu.tw/?ac1=stuprojdetail&id=5a61ec32f3c33
http://dgmm.csie.ntust.edu.tw/?ac1=stuprojdetail&id=5b49f62de7967

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f70500b8&sid=5c5d4f70562b6 1/9

Project 4: Ambient Occlusion and Contour

Introduction

Ambient occlusion is a shading and rendering technique used to calculate how exposed each point in
a scene is to ambient lighting. For example, the interior of a tube is typically more occluded (and
hence darker) than the exposed outer surfaces, and the deeper you go inside the tube, the more
occluded (and darker) the lighting becomes. Ambient occlusion can be seen as an accessibility value
that is calculated for each surface point. In scenes with open sky this is done by estimating the
amount of visible sky for each point, while in indoor environments only objects within a certain radius
are taken into account and the walls are assumed to be the origin of the ambient light. The result is a
diffuse, non-directional shading effect that casts no clear shadows but that darkens enclosed and
sheltered areas and can affect the rendered image's overall tone. It is often used as a post-processing
effect.
Unlike local methods such as Phong shading, ambient occlusion is a global method, meaning that the
illumination at each point is a function of other geometry in the scene. However, it is a very crude
approximation to full global illumination. The appearance achieved by ambient occlusion alone is
similar to the way an object might appear on an overcast day.

enu

Home

aculty

tudents

rojects

Research

Games

Others

Courses

http://dgmm.csie.ntust.edu.tw/?
https://en.wikipedia.org/wiki/Rendering_(computer_graphics)
https://en.wikipedia.org/wiki/Shading#Ambient_lighting
https://en.wikipedia.org/wiki/Phong_shading
https://en.wikipedia.org/wiki/Global_illumination
http://dgmm.csie.ntust.edu.tw/?ac1=
http://dgmm.csie.ntust.edu.tw/?ac1=facultylist
http://dgmm.csie.ntust.edu.tw/?ac1=stulist
http://dgmm.csie.ntust.edu.tw/?ac1=resprojlist
http://dgmm.csie.ntust.edu.tw/?ac1=game
http://dgmm.csie.ntust.edu.tw/?ac1=other
http://dgmm.csie.ntust.edu.tw/?ac1=courlist

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f70500b8&sid=5c5d4f70562b6 2/9

When artists design imagery to portray a visual scene, they need not just render visual information
veridically. They can select the visual cues to portray, and adapt the information each carries. Their
results can depart dramatically from natural scenes, but can nevertheless convey visual information
effectively, because viewers' perceptual inferences still work flexibly to arrive at a consistent
understanding of the imagery.
We suggest that lines in line-drawings can convey information about shape in this indirect way, and
work to develop tools for realizing such lines automatically in non-photorealistic rendering. In the figure
above, the picture on the left renders silhouettes. The picture in the center renders occluding contours,
and shows that contours, on their own, can be quite limited in the information they convey about
shape. The picture on the right, however, includes additional lines we call suggestive contours that
convey an object's shape consistently and precisely.

Pros and Cons
Screen-space Ambient Occlusion advantages:

Advantages: �
Independent from scene complexity. �
No pre-processing, no memory allocation in RAM
Works with dynamic scenes
Works in the same way for every pixel
No CPU usage: executed completely on GPU �

Disadvantages:
Local and view-dependent (dependent on adjacent texel depths) �
Hard to correctly smooth/blur out noise without interfering with depth discontinuities, such as
object edges

Algorithm Overview
Ambient Occlusion

Ambient occlusion is related to accessibility shading, which determines appearance based on
how easy it is for a surface to be touched by various elements (e.g., dirt, light, etc.). It has
been popularized in production animation due to its relative simplicity and efficiency. In the
industry, ambient occlusion is often referred to as "sky light".
The ambient occlusion shading model has the nice property of offering a better perception of
the 3D shape of the displayed objects. This was shown in a paper where the authors report
the results of perceptual experiments showing that depth discrimination under diffuse uniform
sky lighting is superior to that predicted by a direct lighting model.

The occlusion at a point on a surface with normal can be computed by integrating
the visibility function over the hemisphere with respect to projected solid angle:

where is the visibility function at , defined to be zero if is occluded in the direction
 and one otherwise, and is the infinitesimal solid angle step of the integration variable .
A variety of techniques are used to approximate this integral in practice: perhaps the most
straightforward way is to use the Monte Carlo method by casting rays from the point and
testing for intersection with other scene geometry (i.e., ray casting). Another approach (more
suited to hardware acceleration) is to render the view from by rasterizing black geometry
against a white background and taking the (cosine-weighted) average of rasterized
fragments. This approach is an example of a "gathering" or "inside-out" approach, whereas

https://en.wikipedia.org/wiki/Solid_angle
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Ray_casting

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f70500b8&sid=5c5d4f70562b6 3/9

other algorithms (such as depth-map ambient occlusion) employ "scattering" or "outside-in"
techniques.

In addition to the ambient occlusion value, a "bent normal" vector is often generated,
which points in the average direction of unoccluded samples. The bent normal can be used
to look up incident radiance from an environment map to approximate image-based lighting.
However, there are some situations in which the direction of the bent normal is a
misrepresentation of the dominant direction of illumination, e.g.,

In this example the bent normal Nb has an unfortunate direction, since it is pointing at an
occluded surface.
In this example, light may reach the point p only from the left or right sides, but the bent
normal points to the average of those two sources, which is, unfortunately, directly toward the
obstruction.

Silouette and Suggestive contour:

A non-photorealistic rendering system to convey shape using suggestive contours and highlights.
Suggestive contours are lines that will most likely be contours if viewed at a different angle.

Contours are edges that join a polygon facing the viewer with one facing away. Drawing the contours
of a model is pretty simple, but gives you little more than a silhouette. Suggestive contours are "almost

https://en.wikipedia.org/wiki/Radiance
https://en.wikipedia.org/wiki/Environment_map
https://en.wikipedia.org/wiki/File:Aocclude_bentnormal.png

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f70500b8&sid=5c5d4f70562b6 4/9

contours" or edges that would become contours in relatively nearby viewpoints. They give much more
meaningful information about a model's shape. In the bunny on the right, contours are drawn in yellow,
and suggestive contours in green. Another example of contours versus suggestive contours is below.

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f70500b8&sid=5c5d4f70562b6 5/9

Contours on the left, and suggestive contours on the right.

The Basic Task

Ambient Occlusion

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f70500b8&sid=5c5d4f70562b6 6/9

For each hit point {
Shoot out N rays with radius R and for each ray {

Check the distance to the hit point.
If radius is smaller than R
Count 1

}
Determine the ambient occlusion based on the ray counting

}

Silouette and Suggestive contours: Implementation provides a bit more detail about how contours
and suggestive contours are calculated, and how the lines are drawn.
Contours and Suggestive Contours

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f70500b8&sid=5c5d4f70562b6 7/9

To draw the contour

lines, the first step is to calculate n.v for every point on the mesh. The vector n is the normal vector at
the point, and v is the view vector (see the figure at the above).

Contours are the places where n.v = 0. Suggestive contours, mathematically, are the set of points on
the surface at which:

1. The radial curvature Kr at the point is 0 (meaning there is a point of inflection along the curve)
2. DwKr > 0 (meaning that the curve switches from being convex - like a mountain - to concave - like

a valley)

In the picture below (from [2]), the point p is part of the suggestive contour.

Note that you also need to cull the lines for contours and suggestive contours on the back of the
mesh.

Require Functionalities
1. Parse in the scene, material, light and other informations.
2. Fast local rendering with OpenGL.
3. Shoot out ambient ray from each hit points to collect the ambient occlusion with Monte Carlo

methods to determine the ambient occlusion. (15%)
4. Rendering the scene with ambient occlusion (5%)
5. Analyze the each object mesh to determine their silouette. (5%)
6. Determine the suggestive contours (20%)
7. Rendering with line drawing using silouettes and suggestive contours (5%)
8. Implement Screen-space ambient occlusion with GPU. (15%)
9. Implement GPU-based suggestive contours. (15%)

What to Hand in
All your hand-in must be put in a directory with your student ID and the following is the list of hand-in
files under the directory.

Program and source: As usual, you must hand in everything needed to build and run your
program, including all texture files and other resources.

http://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f70500b8&sid=5c5d4f70562b6 8/9

Gallery: Please put a few JPG pictures of the rendering results at least three. Please name the
pictures ID-X.jpg (where X is a number).
Read-me.txt:

Instructions on how to use your program (in case we want to use it when you're not around)
Descriptions of what your program does to meet all of the minimum requirements.

Technical.txt:
The report could contain a description of this project, what you have learned from this project,
description of the algorithm you implemented, implementation details, results (either good or
bad), and what extensions you have implemented.

Advance techonologies
Ambient occlusion

Ambient Occlusion Volumes
This paper introduces a new approximation algorithm for the near-field ambient
occlusion problem. It combines known pieces in a new way to achieve substantially
improved quality over fast methods and substantially improved performance compared
to accurate methods. Intuitively, it computes the analog of a shadow volume for ambient
light around each polygon, and then applies a tunable occlusion function within the
region it encloses. The algorithm operates on dynamic triangle meshes and produces
output that is comparable to ray traced occlusion for many scenes. The algorithm's
performance on modern GPUs is largely independent of geometric complexity and is
dominated by fill rate, as is the case with most deferred shading algorithms.

Suggestive contour extension
1. Pen and Ink Shading:Often artists do pen and ink shading by drawing cross-hatching or

parallel lines to indicate a shadowed region. I tried to imitate this.
2. Varied Line Thickness: I tried varying the line thickness depending upon how "lit" the line was

(so the more in shadow, the thicker the line).
3. Varied Color: I tried to vary the shade of the line depending upon how lit the line was
4. Implement with Chinese ink painting.

References
1. Miller, Gavin (1994). "Efficient algorithms for local and global accessibility shading". Proceedings

of the 21st annual conference on Computer graphics and interactive techniques. pp. 319–326.
2. Langer, M.S.; H. H. Buelthoff (2000). "Depth discrimination from shading under diffuse lighting".

Perception. 29 (6): 649–660. doi:10.1068/p3060. PMID 11040949.
3. Oscar 2010: Scientific and Technical Awards, Alt Film Guide, Jan 7, 2010
4. Suggestive Contours for Conveying

Shape: http://gfx.cs.princeton.edu/pubs/DeCarlo_2003_SCF/DeCarlo2003.pdf
5. Highlight Lines for Conveying

Shape: http://gfx.cs.princeton.edu/gfx/pubs/DeCarlo_2007_HLF/highlights_npar07.pdf
6. Dan Maljovec: http://www.cs.utah.edu/~maljovec/CS6610/
7. Suggestive Contours by Alyssa

Daw: http://users.csc.calpoly.edu/~zwood/teaching/csc572/final10/acdaw/

Results

林德潔, and 劉益銓, Ambient Occlusion and Contour - 林德潔_劉益銓

Detail

呂仁傑, Ambient Occlusion and Contour -- 呂仁傑

Detail

Chia-Hsing Chiu, Ambient Occlusion and Contour -- 邱嘉興

Detail

http://graphics.cs.williams.edu/papers/AOVHPG10/
http://www.google.com/url?q=http%3A%2F%2Fgfx.cs.princeton.edu%2Fpubs%2FDeCarlo_2003_SCF%2FDeCarlo2003.pdf&sa=D&sntz=1&usg=AFQjCNFAg1YVnH0NrEZPhO_y3RjrhxVGiw
http://www.google.com/url?q=http%3A%2F%2Fgfx.cs.princeton.edu%2Fgfx%2Fpubs%2FDeCarlo_2007_HLF%2Fhighlights_npar07.pdf&sa=D&sntz=1&usg=AFQjCNFoM0QgLKpzsnEQJfuEYLW7VxabDw
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.utah.edu%2F~maljovec%2FCS6610%2F&sa=D&sntz=1&usg=AFQjCNHr0PoibfIJx75lXdMuea8Tm9W_7A
http://www.google.com/url?q=http%3A%2F%2Fusers.csc.calpoly.edu%2F~zwood%2Fteaching%2Fcsc572%2Ffinal10%2Facdaw%2F&sa=D&sntz=1&usg=AFQjCNE4tUnln7D-L84AYLo98354EwExCA
http://dgmm.csie.ntust.edu.tw/?ac1=stuprojdetail&id=5a5ec1a6f2b92
http://dgmm.csie.ntust.edu.tw/?ac1=stuprojdetail&id=5a61f01a8ba12
http://dgmm.csie.ntust.edu.tw/?ac1=stuprojdetail&id=5bd56ded3033f

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5c5d4f70500b8&sid=5c5d4f70562b6 9/9

Copyright © 2019 NTUST CSIE Computer Graphics Lab. All right reserved.

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5cddeff83c82e&sid=5cddf0845e736 1/3

Project 5: Motion Path Editing

Overview
The purpose of this project is to give you some experience dealing with motion capture data, to
experience the issues in using file formats for motion data, to gain intuitions about how motion editing
techniques work, and to work through the details of an animation methodology from a research paper.

The Basic Idea:
You must write a program that reads BVH files (a standard skeletal animation data file format) and
displays them in an interactive viewer. You must implement a variant of path editing to allow the user
to alter the motion. You must implement some kind of motion blending and the ability to concatenate
motions (play motions one after another).

Ground Rules
Your program must run on the Windows machines with Unity, Unreal, Ogre3D, and QT OpenGL. You
may use utilities and libraries that you find, subject to approval. Any "borrowed" code must be clearly
documented. Copying someone's assignment from a previous year is not OK.

Reading Files
Your program must read "Biovision hierarchy files." In the webpage motion data, you will find lots of
BVH files to experiment with. You will see all sorts of different skeletal configurations, joint types, and
other variations of the file formats. In the ideal world, you would be able to read any BVH file we threw
at your program. More realistically, we would like your program to understand some subset of them.
The larger the subset, the better (and this will be rewarded in grades). Some ground ground rules:

1. Your program should not crash on a file that it cannot understand.
2. Your program must read at least 5 of the files in the Motion directory. You can pick the 5.
3. You must, in your documentation, describe the limits of the reader. It is much better to say "my

reader only supports ZXY euler angles for joints" than to have a reader that mysteriously doesn't
work some times.

4. Some reasonable simplifying assumptions you might make include: supporting only certain types
of Euler angles, or only supporting a fixed topology. (the latter is a severe limitation, and I do not
recommend it).

Displaying Motion
You must provide an interactive viewer for displaying the motions that you read in. Your viewer should
display things, and provide the ability to play the motion at "frame rate" as well as the ability to "scrub"
(interactively move through frames). You must provide some interactive camera controls so that the
user can control the view.
The nicer that you draw things, the better. Drawing lines between the joints is the easiest, but drawing
some "bones" (like ellipsoids) looks a lot better. Skinning looks the best, but that's a really advanced
feature.

1. You should do some things to help make the motion easier to see - for example, drawing "traces"
that sweep out the paths of the end-effectors, or strobes (drawing several frames simultaneously).
Try being creative in given tools to help the user visualize the motion.

enu

Home

aculty

tudents

rojects

Research

Games

Others

Courses

http://dgmm.csie.ntust.edu.tw/?
http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html
http://dgmm.csie.ntust.edu.tw/?ac1=
http://dgmm.csie.ntust.edu.tw/?ac1=facultylist
http://dgmm.csie.ntust.edu.tw/?ac1=stulist
http://dgmm.csie.ntust.edu.tw/?ac1=resprojlist
http://dgmm.csie.ntust.edu.tw/?ac1=game
http://dgmm.csie.ntust.edu.tw/?ac1=other
http://dgmm.csie.ntust.edu.tw/?ac1=courlist

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5cddeff83c82e&sid=5cddf0845e736 2/3

2. Drawing a groundplane and shadows are an easy way to make things look a lot better.
3. You program must be able to place the camera in a position where it can see the whole motion

(this requires you to figure out the spatial extents of the motion). The better your program does at
this, the better.

4. A nice advanced feature to add is a tracking camera that follows the character as it moves. This
take a little thought to do well - it can't be too bouncy, or spin too fast, ...

5. You must put in a timer to control framerate. Your program must offer the option of displaying
animation at 30fps. You might want to allow other options (like just blasting the animation as fast
as possible, or allowing for slow motion viewing).

6. Your program should also support showing 2 (or more) motions at once. This will be useful for
when two characters interact, as well as for comparing motions (which you will need to do).

Forward Kinematics
Your program must compute the forward kinematics. That is, you must be able to compute where each
joint goes, and have some way to show that you can do this. For example, you might want to draw a
"trace" line showing where the point goes.

Path Editing
You must provide the user with a way to edit the path of the motion (e.g. if the character was walking
in a straight line, you can bend it and have it walk along a curve). The paper on path editing is here.
Note: this is not a paper we will be discussing in class. Part of the exercize is for you to learn how to
read a technical paper, figure out how it works, and try it out. While I am biased (I did write the paper),
I think that this one isn't too hard.
Path editing has a lot of variants. Start with the most basic, and then add features. The most basic
version (ignoring orientation) should be trivial. I expect that most people will be able to get the
orientation control. Arc-length parameterization (you'll understand what I'm talking about after you
read the paper) is clearly an advanced thing. Putting in some kind of IK solver to cure foot skate is a
very advanced feature (but there are some simple ways to do it that might make it not so bad).
There are many other possible extensions to path editing to try. For example, you might determine
when the character is in the air, and make sure the path doesn't bend (ideally, you could stretch the
path in such a case). You might mark parts of the motion that are not allowed to be path editied (for
example, when a character stops to pick up an object).

Rigid Transformations, Concatenating and Blending
You need to be able to apply a rigid transformation to a motion before displaying it. This will be
important for blending and concatenating. You should have some interface for manually
You need to be able to play a sequence of motions one after another. This involves applying the
transformation such that the end of one motion is the beginning of the next. We will provide you with
examples of pieces of motion that simple "snap together" - you will be able to make loops and whatnot
using them by playing one after another. You might want to be able to set up your interface so that you
can load in a bunch of motions and play sequences of them.
You need to be able to blend 2 motions together (with varying blend weights). For example, to make a
transition between one motion and another. This means that you must be able to rigidly transform
motions (so that they line up well enough) and time shift things. If you want to do better (implement
time warps or something that's a bonus).
Note: the blending can be completely manual. However, you must be able to position the two motions
relative to one another, and set the time shift.

Requirements
You must turn in all files required so that we can run your program, documentation on how to use your
program (including a description of limitations), and a description of your programs features.

The basic project would include:
1. Reads many BVH files, with some restrictions
2. Be able to read in 2 BVH files simultaneously and show them together.
3. Displays ellipsoids or other rigid shapes for bones
4. Places the camera automatically, and gives a camera user interface
5. Implements basic path editing (with orientations handled correctly)
6. Is able to position motions (under user control) and concatenate and blend them

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5cddeff83c82e&sid=5cddf0845e736 3/3

It is better to have a project that does all of the basic features and works well, than to have a project
that has some fancy, advanced feature, but fails at the basics.

An advanced project might add:
1. Read almost all BVH files
2. Display nice character geometry
3. Have a good camera UI that includes tracking
4. Implements advanced path editing (arc-length parameterizations)

Above and beyond the call of duty projects might:
1. Does better alignment methods (registration curves, time warps), or automatic methods to find

alignments
2. Has some methods for choosing which motions to concatenate (interactive control, random walks,

...)
3. Implement Inverse Kinematics to clean up footskate
4. Do smooth skinning
5. Provide other motion editing features

How will we grade it?
You will have to provide a web page documenting the project (details to follow). You will also have to
give a in-class demo of your project.

Reference
[1] Michael Gleicher, "Motion Path Editing", In Proceeding of 2001 I3D.
[2] BVH Motion Data Setsbvh_sample_files.zip
[3] BVH Information SlidesNTUST-CSCG2011S-P2-Steps.ppt
[4] BVH Introduction.BiovisionHierarchy.pptx

Copyright © 2019 NTUST CSIE Computer Graphics Lab. All right reserved.

http://dgmm.csie.ntust.edu.tw/?uid=5cddf040933aa
http://dgmm.csie.ntust.edu.tw/?uid=5cddf04093522
http://dgmm.csie.ntust.edu.tw/?uid=5cddf04093466

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5cddf01586e53&sid=5cddf19d337f4 1/4

Project 6: Particle Simulation with Physics
Engine

Overview
The goal of this project is to give you a chance to explore the issues in doing physical simulation for
animation. You must implement the basic requirement which builds a particle simulation system in 3D
space like a cloth(each particle is a point mass that can have forces pushing it). For this assignment,
trying different simulation methods is more important than making fancy images. The project does
have various stages, that you should progress through. However, you should look ahead to make sure
that your design decisions in an early phase don't preclude what you will need to do later. The early
phase of the project will have you build a particle simulator where you use various forces on the
particles to move them around. You should try to make your system interactive and fast so you can try
lots of things. The later phase of the project will have you experiment with making a complex mass-
spring simulation such as cloth. You will be able to make a springy string using the early part of the
project. But if you want to make those springs connecting the particles of the string together stiff, you
will need to explore different solution methods: explicit integrators (such as predictor-corrector),
implicit integration (ala. Baraff&Witkin's cloth paper), and semi-implicit integration (Bridson Fedkiw).

Note: You need to implement this particle simulation system with Unity, Unreal, OGRE3D, and
OpenGL.

Phase 1: build an interactive particle simulator.
The system must be able to simulate a number of particles - each particle should be able to have its
mass set to a different value. You should be able to add particles interactively. In addition, the system
must have interface to show the progress of the simulation.
Requirement for this phase:
Your code must implement the following features:

Simulate a number of particles - each particle should be able to have its mass set to a different
value. You should be able to add particles interactively.

Show the progress of the simulation - this is important for debugging.

Save and read in a file that describes the initial configuration of the particles, as well as any
forces to be applied to them.

Save the results of a simulation and replay it. While your simulation does not have to be real time,
your playback should be able to play at the correct frame rate for your simulation.

Note: you may want to have an adaptive step-size integrator at some point, so make sure
your playback understands the simulator timing.

A generalized force structure: This is described in the slides. (If youʼre using the skeleton code,
you should replace delete_this_dummy_spring with a std::vector of forces.) You must implement
two subclass forces:

Constant force(constant in a particular direction): such as gravity force acting like gravity.
Damping force: Velocity-dependent damping force
Spring force:

enu

Home

aculty

tudents

rojects

Research

Games

Others

Courses

http://dgmm.csie.ntust.edu.tw/?
http://dgmm.csie.ntust.edu.tw/?ac1=
http://dgmm.csie.ntust.edu.tw/?ac1=facultylist
http://dgmm.csie.ntust.edu.tw/?ac1=stulist
http://dgmm.csie.ntust.edu.tw/?ac1=resprojlist
http://dgmm.csie.ntust.edu.tw/?ac1=game
http://dgmm.csie.ntust.edu.tw/?ac1=other
http://dgmm.csie.ntust.edu.tw/?ac1=courlist

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5cddf01586e53&sid=5cddf19d337f4 2/4

1. A spring (of a setable distance) between two particles: (e.g. a force proportional to the relative
velocity of particles) repulsion between particles (if the distance between particles is ever less
than X, they push each other away)

2. A spring between a particle and a specific location (or, allow some particles to be un-movable
nails and then you just need springs between particles)

3. A spring that pushes particles upward from the floor (penalty collistions with the floor), or outward
from the walls.

A generalized constraint structure: This is also described in the slides. (If youʼre using the
skeleton code, you should replace delete_this_dummy_rod and delete_this_dummy_wire with a
std::vector of forces.) You must implement at least the following two subclasses:

RodConstraint. Constrains two particles to be a fixed distance apart. (Rendering code
included in the skeleton.)
C(x1, y1, x2, y2) = (x1 - x2)2 + (y1 - y2)2 - r2
CircularWireConstraint. Constrains a particle to be a fixed distance from some point:

C(x, y) = (x - xc)2 + (y - yc)2 - r2
Mouse interaction. When the user clicks and drags the mouse, a spring force should be
applied between the mouse position and the given particle to make your system interactive.

Several Numerical Integration Schemes (Simulators). The integration scheme

should be selectable at runtime with keystrokes or some other interaction paradigm. You will find this
easiest if you implement a pluggable integration architecture as described in the slides. The minimum
integration schemes are:

Euler
Runge-Kutta 2 and
Runge-Kutta 4 and

The user interface should be able to draw all of the connections/forces. Especially the spring
connections.

Doable demo in this phase
1. Make a "soft" object by taking some particles and connecting them with a lattice of springs. the

simplest is a triangle. throw the object around and watch it bounce off the walls and jiggle.
2. Make a fountain of particles - use repulsion to make a "fluid". the stream of the fountain should

wind up in a puddle of particles at the bottom. (use damping to make sure that things don't
explode)

3. Make a swinging rope or chain. connect a line of particles to their neighbors, and nail the top on in
place. (use a little damping to prevent explosions)
Note: At this point, everything should be either very springy or very damped, since you are still
using simple integration methods.

Phase 2: Stiff Spring
In this phase, the first step is to improve the integrator by

Implement an implicit euler's method (as in Baraff and Witkin). Because the system is so small,
you need not worry about their efficiency tricks for large sparse linear systems. Once you have an
implicit solver, a semi-implicit solver should be easy (use explicit solution of the springs and
gravity, and implicit solution of damping - as in Bridson&Fedkiw).

Doing the following experiments

Make a chain of 10-20 partcles, connected with springs and a little bit of damping. Nail the top
one in place, and let this "rope" swing. Make a graph of the total length of the chain. Notice how it
stretches and compresses. The ability to measure this stretching will be useful as we explore
different integrators.

Try to raise the stiffness of the springs to prevent stretchiness. At some point, the equations will
become too stiff and the string will explode.

Experiment with the tradeoff between stiffness and timestep.

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5cddf01586e53&sid=5cddf19d337f4 3/4

You now have the ability to experiment with the various tradeoffs in creating a stiff piece of string.
It should be the case that with better integrators (like implicit), you can take larger time steps, but
each time step takes longer to compute. An implicit solver might allow you to take time steps that
at 100 times bigger than an explicit solver, but it might take 200 times longer to compute (in which
case, its probably better to do 100 explicit steps).

For this part of the assignment, you need to report on what you find. What are the tradeoffs? How
much better are different solvers? Is implicit necessarily better than explicit? Is one RK4 step
better than 4 Euler steps (which should be approximately the same amount of computation).

Phase 3: Create a cloth simulation
Mass-Spring Model
The Mass-Spring Model is a very basic method to simulate cloth. Since it is relatively easy to
implement and could achieve good results, implementing this model could be a very good exercise
before exploring some more advanced cloth simulation methods.
In this model, cloth is simulated by a grid of particles which are interconnected with spring-dampers.
Each spring-damper connects two particles and generates a force based on the particles’ positions
and velocities. The structure of this model could be illustrated using the image below:

Each particle is also influenced by gravity. With these basic forces, we can form a cloth system.

Particle
The starter code already provides you with a particle class. Each particle has several properties at a
specific time, including its position, velocity, mass and a force accumulator which stores all the forces
influence the particle at that time. From these properties, we can calculate how particles would move
at next time step.

Computing Forces

Cloth Simulation
The algorithm of simulating cloth could be summarized as

1. Compute forces for each particle
2. Integrate motion: apply Forward Euler Integration for each particle
3. Repeat

Reference Image

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5cddf01586e53&sid=5cddf19d337f4 4/4

(Note: for the basic requirements, you don’t need to implement collision.)

There should be existing cloth simulation existing in your physical engine and try to use them to
create a similar simulation to the one you created in phase 2 and do the comparison.

Extra Credit
Better integrator (+ 5 Each)

1. Verlet Integrator. See here.
2. Leapfrog Integrator. Evaluates position and velocity at different times. See here

for more details.
1. Symplectic Integrator. As described in class. Compute the positions explicitly and velocities

implicitly. (No need for a solver.)
Collision (+ 10 Each)

1. Collisions with the Walls. Particles should bounce off the walls and floor.
2. Collisions with other Particles. Particles bounce off each other.

Angular Springs (+15). Pulls a triplet of particles so that their subtending angle
approaches some rest angle.

Angular Constraints (+20). Like angular springs, but the angle is actually
constrained.

3D Cloth with collisions.(+30)
Hair with collisions.(+30) How can this be implemented? What about collisions?

What you will turn in
1. You will prepare a web page describing you assignment, complete with pictures of what your

program looks like and a description of its features and user interface. Be sure to detail all of the
integrators that work, and all the types of forces that the user can create. You should also
document your file format for describing simulation initial conditions.

2. You must also write a report (either in html or a pdf) that is linked to this page describing your
experiments and results for phase 2. Describe how to maximize stiffness, minimize damping, and
maximize performance. What are the tradeoffs? Be as detailed as possible.

3. Wherever possible, provide quantitative details. And, be sure to discuss how what you find
compares with what you would expect to find.

4. Also, consider the computational costs. At what point would it be useful to switch to a sparse
linear solver? how would the size of the system that you were simulating effect the choices in
integrator?

Copyright © 2019 NTUST CSIE Computer Graphics Lab. All right reserved.

http://en.wikipedia.org/wiki/Verlet_integration
http://www.physics.drexel.edu/students/courses/Comp_Phys/Integrators/leapfrog/

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5cddf01970fa2&sid=5cddf1c603f89 1/2

Project 7: Chain Reaction

Overview
In this project, you will make the roller coaster applications more interesting. You will add an
interactively controlled animation into the roller coaster. The purpose of this project is to force you to
use the physical simulation engine which is an important tool for the game design. The animation is to
demonstrate the a chain reaction simulation. The things must be done with a physical engine in QT &
openGL. We recommend you to use bullet.

Components in your animation.
Vehicle moving on uneven surface:

1. Vehicle must be export from Maya, 3DMax or Blender and then be loaded in by the openGL
function.

2. You should also have some UI to control the speed of the car.
3. Uneven surface can be a terrain using the height field.
4. You should provide some UI to control the roughness and the slope of the ground

Cloth and wind
1. Cloth simulation can be easily done by the physical engine and thus in your scene, you must

get the cloth into the reaction chain.
2. The wind is the force to act on the cloth and the speed of the wind must be controlled by a

slider. In addition, the speed of the wind will also define the force on the cloth.
Water (not real simulation)

1. Water is important for reality. Water simulation is slow but you can have different ways to hack
the effect such as using the combination of sine wave. More examples can be found in Bullet
and NVidia web site.

2. Refraction effect on the water.
Some objects like dominoes and pool balls

1. Dominoes can act a complex reaction among objects which one cause another to react and
this is interested physical phenomenon.

2. The same description can be say to pool balls.
Animated character: skeleton characters are important in the game. It can represent the hero or the
enemy. Please use a tool to import the animation in and put an animation on the character.
Fire and smoke:

1. Fluid is important for reality and normally a physical engine will provide the proper tool to do it.
2. The size of the fire and the heat generated by the fire should be able to control by a slider

Camera control to follow the active animation: the smooth game camera motion is important to
generate a nice game and thus you need to have a follow camera to follow the events. In addition,
the camera should be moved smoothly.
Sound according to the events: sound is an important element. You should put the sound for each
collision and the events happen.
Sky
Day and night: day and night should have different effects on the result.

Example scenarios
Here we will provide an example scenario but we hope that you can make something more interesting
and intrigued. The scenario setting is illustrated in the figure.

enu

Home

aculty

tudents

rojects

Research

Games

Others

Courses

http://dgmm.csie.ntust.edu.tw/?
http://dgmm.csie.ntust.edu.tw/?ac1=
http://dgmm.csie.ntust.edu.tw/?ac1=facultylist
http://dgmm.csie.ntust.edu.tw/?ac1=stulist
http://dgmm.csie.ntust.edu.tw/?ac1=resprojlist
http://dgmm.csie.ntust.edu.tw/?ac1=game
http://dgmm.csie.ntust.edu.tw/?ac1=other
http://dgmm.csie.ntust.edu.tw/?ac1=courlist

2019/5/17 Computer Graphics Lab | NTUST CSIE

dgmm.csie.ntust.edu.tw/?ac1=courprojdetail_CG2012F_3&id=5cddf01970fa2&sid=5cddf1c603f89 2/2

1. When the user push the button, the car is initiated down the slope and the UI similar to accelerate
pedal should be able to control the speed.

2. The car is driven down the hill which is an uneven surface.
3. The car will hit the start button of a fan and the fan start to rotate to generate the wind and there

should be a UI to control the speed of the wind.
4. The wind will blow the cloth to make the boat move across the water and the speed of the wind will

change the speed of the boat.
5. At the same time, when boat move across the water, it should show the wave as the ripple. At the

same time the water should reflect the sky and show the bottom of the water with refraction.
6. The boat will cross the water and then initiate the dominos and then hit the balls to start the robot.
7. The robot will walk across with some interesting animation to hit the start of the fire.
8. The fire is up and will burn down the rope and the size and heat of the fire should be controlled by

some UI.
9. The fire will burn down the rope and the weight will drop and stop the animation and then there

should be some final scene.

Check Points
1. Check point 1: integrate bullet: Demo basic object collisions (cubes, spheres, plane).
2. Check point 2: set up the scene layout: Model the terrain, import different models (vehicle, table,

boat, etc.); Show that everything works with the physics engine.
3. Check point 3: have the vehicle simulation, camera control, and UI for setting parameters.
4. Check point 4: demonstrate all physics simulations (cloth, water, fire, smoke, etc.).
5. Final demo.

Copyright © 2019 NTUST CSIE Computer Graphics Lab. All right reserved.

教學與服務記錄

國立台灣科技大學 資訊工程學系

賴祐吉 副教授

2019 年 12 月

教學

A. 開授課程 (99 學年度至 103 學年度)

 研究所

 3D電腦遊戲(一)，3D Computer Game I (程式實作代替考試)

(104上(英)：4.9、105上(英)：3.68、106上：3.93、107下(英)(P)：4.33)

 3D電腦遊戲(二)，3D Computer Game II (程式實作代替考試)

(104下(英)：4.40、105下(英)：4.20、106下：4.00)

 計算機圖學，Computer Graphics (程式實作代替考試)

(105上：3.60、106上：4.43、107上：4.46)

 數位網格處理，Digital Mesh Processing(程式實作代替考試)

(104上：5.00)

 資工研究與實務校外實習(一），Research Internship in Computer

Science and Information Engineering (I)
 (107上)

 資工研究與實務校外實習(二），Research Internship in Computer

Science and Information Engineering (II)
 (107下)

 資工研究與實務校外實習(四），Research Internship in Computer

Science and Information Engineering (IV)
 (106下：4.00)

※括弧內，黑體數字，為教學評量成績，(英)，為英文授課，(P)為PBL課程。

 大學部

 電腦圖學導論，Introduction to Computer Graphics，(程式實作代替考

試)

(104下：4.38、105下：4.46、106上：4.02、107上：3.89)

 電腦圖學導論實習，Introduction to Computer Graphics Lab，(程式實作

代替考試)

(104下：4.44、105下：4.27、106上：3.88、107上：3.94)

 物件導向程式設計，Object-oriented Programming，(期中期末，外加程

式實作)

(105下：3.55、105下：3.74、107下：3.94)

 物件導向程式設計實習，Lab for Object-oriented Programming，(程式實

作)

(105下：3.60、105下：3.81、107下：4.04)

 遊戲企劃與設計原理實習，Lab for Computer Game Design and

Development，(程式實作取代考試)

(106上：3.74)

 電腦遊戲賞析，Game Survey，(賞析遊戲報告及影像剪輯)

(106上(P)：4.12)

 電子電路，Electronics and Electrical Circuit，(期中期末，外加程式實

作)

(104下：3.94)

 手機遊戲設計，Mobile Game Design (程式實作代替考試)

(104上：4.08、105上：3.70)

 遊戲程式設計，Computer Game Programming (程式實作代替考)

(106下(P)：3.79、107下：4.06)

 專業成長校外實習，Summer Intern for Professional Training

(104上、104下)

 資工實務暑期校外實習，Summer Practical Training for Computer

Science and Information Engineering
(104暑)

※括弧內，黑體數字，為教學評量成績，(P)為PBL課程。

 協助執行教育部之「ILab」計畫，幫忙建構實驗室及考試之試行。

 協助執行教育部之「高階人材」計畫，協助完成KPI。

 教育部「產業學院」試辦計畫，電資學院開設短期契合式產學專班學程，

合作公司，鈊象電子股份有限公司，互動遊戲設計學程。

 與姚智原、戴文凱和花凱龍教授合作，於108年度成立AI跨域應用產業碩士

專班。

 教育部智慧製造電子應用聯盟中心智慧整合感控系統工業應用分項執行機

械手臂設計環境之擬真生成、探測深度產生和虛擬實境上之展示。

 課程所邀請之業師

業師 任職 課程

吳育光
鈊象電子股份有

限公司/研發部長

手機遊戲設計(104上、105上)

計算機圖學(105上)

曾冠諦

鈊象電子股份有

限公司/資深主任

手機遊戲設計(104上、105上)

計算機圖學(105上)

電腦圖學導論實習(106上)

計算機圖學(106上)

3D電腦遊戲 (二)(106下)

遊戲程式設計(106下)

王峻偉

鈊象電子股份有

限公司/高級軟體

工程師

天紫科技有限公

司/資深軟體工程

師

3D電腦遊戲 (一)(105上、107下、108上)

3D電腦遊戲 (二)(105下)

電腦圖學導論(107上、108上)

電腦圖學導論實習(107上、108上)

計算機圖學(107上)

物件導向程式設計(107下)

物件導向程式設計實習(107下)

遊戲程式設計(107下)

林傳健
7QUARK/CTO &
Co-Founder

電腦圖學導論(105下)

電腦遊戲賞析(106上)

遊戲企劃與設計原理實習(106上)

3D電腦遊戲 (一)(106上)

3D電腦遊戲 (二)(106下)

遊戲程式設計(106下)

曾柏達
神研科技/技術經

理

物件導向程式設計(105下、106下)

物件導向程式設計實習(106下)

陳國瑋

台灣盈米科技股

份有限公司/專案

經理

物件導向程式設計(105下)

3D電腦遊戲 (二)(105下、106下)

電腦圖學導論(105下、106上)

遊戲企劃與設計原理實習(106上)

電腦圖學導論實習(106上)

計算機圖學(106上)

遊戲程式設計(106下)

郭秉宸 7QUARK/製作人

電腦遊戲賞析(106上)

電腦圖學導論(106上)

3D電腦遊戲 (一)(106上)

3D電腦遊戲 (二)(106下)

遊戲程式設計(106下)

周軒廷
台灣盈米科技/專

案助理

物件導向程式設計(106下、107下)

物件導向程式設計實習(106下、107下)

電腦圖學導論(107上)

電腦圖學導論實習(107上)

計算機圖學(107上)

遊戲程式設計(107下)

3D電腦遊戲 (一)(107下)

陳威光
ARvsVR工作坊/

講師

3D電腦遊戲 (一)(104上、103上)

3D電腦遊戲 (二)(104下、103下)

羅應陞

英業達AI中心工

程師

3D電腦遊戲 (一)(108上)

電腦圖學導論(108上)

電腦圖學導論實習(108上)

B. 輔導學生之研究

 碩士班歷届指導學生

學生 論文題目 中/英 學年

鍾賢廣 基於霍爾效應的任意曲面上定位方法 中 107

林進仰 光學同調斷層牙周檢測系統 中 107

陳彥霖 利用擴散式曲線與四角網格重構法降低資料使用量 中 107

陳柏君 生物組織遮蔽下之牙結石偵測系統 中 107

羅應陞 利用自然光的即時室內照明控制 中 106

陳奕佑
基於骨架資訊並利用 N-旋轉對稱向量場之重新網格

化
中 106

陳致成 互動式光學斷層牙齒掃描重建 中 106

李建緯 利用特徵網格分析之骨架感知重新網格化 中 105

郭鴻年 利用平滑線場網格化鑲嵌可縮放向量圖 中 105

翁世璋 利用最佳化各式參數實現漫畫框格切割 中 105

李政其 傻瓜運鏡：虛擬拍立得掌鏡系統 中 104

曾柏達 以圖像處理器平行加速大地電磁演算法 中 104

 專題指導學生

學生 學年 專題題目

陳奕佑、蔡祖寧 104
程序化網點產生Procedure Screentone

Generator

黃教荃 104 Brimo APP開發

羅應陞、陳彥霖 105 基於顯著性的圖形向量化與即時薄板曲線

林進仰、陳政煬、鍾賢廣 105 賽車遊戲系統與編輯工具

邱嘉興、黃弘文 106 VR釣魚

蔡中旗 106 虛擬智能操偶手套

范茗翔、鄭鈺哲 108 線上3D建模之貼圖工具開發

謝公曜 108 地景設計之2D曲線編輯工具開發

邱韋霖、謝宜杭 108 3D捕魚機場景設計工具開發

 實習指導學生

學年 學生 公司

103學年暑假 陳奕佑、蔡祖寧、黃教荃 鈊象電子

104學年度 李政其、郭鴻年、葉致祥 美國加州杜比音效公司

104學年度 林進仰、陳政揚、鍾賢

廣、陳彥霖、林德潔

104學年暑假 羅應陞 鈊象電子

105學年暑假 朱駿采 鈊象電子

105學年 林進仰、邱嘉興、鍾賢

廣、黃弘文、蔡中旗

鈊象電子

106學年 邱嘉興 日本東京大學

106學年暑假 羅應陞 英業達之AI中心

106學年暑假 范茗翔、謝公曜、邱韋霖 鈊象電子

107學年度 邱嘉興、郭俊廷 鈊象電子

107學年度 黃弘文 昇暘科技

107學年度 邱韋霖、謝宜杭 鈊象電子

108學年度 邱嘉興 日本東京大學

 口試指導學生

學校 學生 學年

國立台灣大學 胡柯民 107

國立臺灣科技大學 張家瑋、郭皓程、林德潔、來國彥、鄭

皓宇、呂仁傑
107

國立臺灣科技大學 Jonathan Hans Soseno、John Jethro

Corpuz Virtusio
107

國立臺灣科技大學 呂柏儒、潘琮皓 107

國立臺灣科技大學 Ardiawan Bagus Harisa、劉宥銘 107

國立臺灣科技大學 李昆達 107

國立臺灣科技大學 詹竣傑、劉俊成、廖偉丞 106

國立臺灣科技大學 丁奕豪 106

國立臺灣科技大學 Hadziq Fabroyir 106

國立臺灣科技大學 陳建樺、陳柏安、顏天明、黃紹奕、張

哲瑋
105

國立清華大學 林文勝、林佑恩、蕭任宸 105

國立臺灣科技大學 李亭緯、白勝宏 105

國立師範大學 黃浩庭、賴威豪、唐昌宇 105

國立臺灣大學 蔡佳昱、李維哲 105

國立臺灣大學 黃大源 105

國立臺灣科技大學 洪仕軒 104

國立臺灣科技大學 蘇柏亘 104

國立臺灣大學 官順輝 104

C. 教學績效

 與姚智原、戴文凱和花凱龍教授合作，於108年度成立AI跨域應用產業

碩士專班。

 指導學生獲奬

 指導學生羅應陞與陳彥霖之專題「基於顯著性的圖形向量化與即時

薄板曲線」獲得系上第一名，並參與2017年全國技專校院學生實務

專題製作競賽入圍。

 指導學生蔡中旗與周紀愷之專題「虛擬智能操偶手套」獲得系上第

一名，並參與2018年全國技專校院學生實務專題製作競賽暨成果展

資工通訊群之第三名。

服務

A. 校內服務

 國際訪問及招生

 代表資訊創新中心訪問德國TU Dortmund、Hochschule Niederrheln

Krefeld和RWTH Aachen Universi

 ty，2016/08

 代表資訊創新中心訪問日本東京大學，2019/08

 校內行政服務

 院課程委員會委員(108)

 系學生校外實習委員(108)

 系課務暨招生委員會委員(107、108)

 校科技權益委員會委員(108)

 校產學合作委員(104)

 校圖書館委員(107)

 院空間規劃委員(104)

 院務會議代表(105)

 院務會議代表候補委員(106)

 院發展委員會代表(105、107)

 院四技實測委員(106)

 系學術與系務委員會委員(106)

 四年制導師(107、108)

 電資不分系導師(104、105、106、107、108)

 AI跨域應用產業碩士專班出題(107)

 博士班一般生(104、105、107)

 博士、碩士甄試委員(104、105、106)

 電資學院四年制甄試(104)

 大轉學考稽核候補委員(106)

 大學四技技優推甄委員(106)

 大學四技推甄委員(104、107)

 全校不分系四年制甄試(107)

 其它服務

 學校頂尖計畫及典範計畫之實際操作展演。

 104年度上學期典範期中展演。

 104年度下學期頂尖計畫期中展演。

 104年度教育部審查。

 協助2015、2016、2017、2018和2019學校及電資學院外賓參訪參觀鈊

象之互動娛樂研究中心。

 參與協助2016、2017、2018和2019學校教育部深耕計畫之實際展示。

 2015、2016、2017參與高中及高職招生宣導活動。

 參與校內頂尖大學計畫

 104年度—創意母體中心之感知互動實驗室。

 辦理104、105、106、107、108年度遊戲設計競賽—鈊象電子公司贊助

100000元。

 辦理107、108年度遊戲設計競賽—有夢最美贊助30000元。

 2015、2017和2018與SONY簽定合作免費借用PS4開發機。

 擔任台北商業大學創意設計競賽評審(105)

B. 校外服務

 擔任國際會議之主辦

 2016 Computer Graphics Workshop—Chair
 2016 Pacific Visualization—Cochair

 擔任國際會議之協辦

 2014 Conference on Technologies and Applications of Artificial
Intelligence—Demonstration Track Chair

 2017 Pacific Graphics—Local coordinator Chair

 重要支援國家產業審查活動

 經濟部工業局小型企業創新研發計畫(SIIR)審查委員。

 新北巿文化局專案規畫審查委員。

 新北巿十三行博物館專案規畫審查委員及期中審查委員。

 台北巿職能發展學院107年虛擬及擴增實境產業應用座談暨委外承訓單

位履約說明會委員。

 ITSA互動多媒體設計與整合應用組出題委員。

 擔任重要國際期刋論文之審查委員

 IEEE Transactions on Circuits and Video Technology
 IEEE Transactions on Vehicle Technology
 IEEE Access
 Computer Graphics Forum
 Journal of Information Science and Engineering (JISE)
 Computers & Graphics
 Journal of Visual Communication and Image Representation

 擔任重要會議論文之議程委員

 2015、2016、2017和2108 Computer Graphics Workshop

 2017 Pacific Graphics Program Committee.
 2018和2019 ACM Symposium on Virtual Reality Software and Technology

Program Committee.
 2018 Computer Vision, Graphics, and Image Processing (CVGIP).
 2016, 2017, 2018 ACM Symposium on Virtual Reality Software and

Technology
 2018 NICOGRAPH International
 2018和2019 IEEE International Symposium on Multimedia

 2018 European Workshop on Visual Information Processing

 國科會專題計畫審查

 104和105學年度計畫審查：大專學生參與專題研究計畫-工程處專題研

究計畫線上審查。

 104、105、106、107和108學年度計畫審查：工程處專題研究計畫線上

審查。

 近期受邀國內外學術研討演講和產業媒合

 主辦單位：科技部

Date：2019/07/25

Title：可穿戴式行動輔具—手語翻譯手套與VR牙醫訓練

 主辦單位：東京大學資訊學系

Date：2018/02/28

Title：Screen-aware Manga Reader and Manga Vectorization

 主辦單位：Oregon State University

Date：2017/07/28

Title：Image Vectorization with TPS and SVG-embedded 3D Model Rendering.

 主辦單位：Portland State University

Date：2017/07/05

Title：NPR Chinese Painting Animation.

C. 服務績效

 與姚智原和戴文凱教授合作，於107年8月續簽3年3000千萬，鈊象台科

研發中心。

 與姚智原、戴文凱和花凱龍教授合作，於107年度成立校級之資訊科技

創新研究中心。

 與姚智原老師及智財學院林瑞珠院長合作，參與台南歷史博物館AR虛

擬人偶展覽計晝。

 與姚智原老師及智財學院林瑞珠院長合作，參與台中國立美術館--20

週年館慶活動，將藝術作品變成QR Code，有美麗的圖象和色彩，還能

與畫作互動，並擴增實境，讓欣賞畫作變得更有趣。

 參與十三行博物館之常設展VR互動展計畫。

 參與文化部文資局—建構常設展「走入布袋戯」計畫。

 參與新北巿文化局—107年暑假之互動特展特展計畫。

 參與新北巿淡水古蹟博物館—滬尾礮臺互動特展計畫。

 參與2017台北發明展。

 參與2017烏鎮的互聯網大會。

教學效果—評量及學生作品

教材、教案、程式專案簡錄

服務記錄

學生成果

教學及服務優良紀錄

Trains and

Roller Coasters

Trains and

Roller Coasters

Trains and

Roller Coasters

Ray Tracer

Ray Tracer

Ray Tracer

Incremental

Instant

Radiosity

Implementation

Incremental

Instant

Radiosity

Implementation

Ambient

Occlusion and

Contour

Ambient

Occlusion and

Contour

2D

2D

2D

Fps

Game

Fps

Game

Fps

Game

Amusement

Park

Amusement

Park

Amusement

Park

Amusement

Park

Amusement

Park

Amusement

Park

Amusement

Park

Amusement

Park

Fps

Game

Fps

Game

Fps

Game

Ray Tracer

Ray Tracer

Ray Tracer

Incremental

Instant

Radiosity

Implementation

Incremental

Instant

Radiosity

Implementation

Incremental

Instant

Radiosity

Implementation

Incremental

Instant

Radiosity

Implementation

Ambient

Occlusion and

Contour

Ambient

Occlusion and

Contour

Ambient

Occlusion and

Contour

Motion Path

Editing

Motion Path

Editing

Particle

Simulation

with Physics

Engine

Particle

Simulation

with Physics

Engine

Chain Reaction

Amusement

Park

Amusement

Park

Trains and

Roller Coasters

on PS4

Trains and

Roller Coasters

Water Surface

and Renderin

Chain Reaction

Incremental

Instant

Radiosity

Implementation

Incremental

Instant

Radiosity

Implementation

Incremental

Instant

Radiosity

Implementation

Incremental

Instant

Radiosity

Implementation

Incremental

Instant

Radiosity

Implementation

Motion Path

Editing

Motion Path

Editing

Motion Path

Editing

Motion Path

Editing

Particle

Simulation

with Physics

Engine

Particle

Simulation

with Physics

Engine

Particle

Simulation

with Physics

Engine

Particle

Simulation

with Physics

Engine

3D Game

3D Game

Amusement

Park

PS4 Project

	03-01-分頁
	03-02-遊戲程式設計
	03-03-NTUST-CSIE-MGD-Lecture03-Unity-Physic
	03-04-遊戲程式設計-專案
	03-05-遊戲程式設計-程式專案一
	03-06-遊戲程式設計-程式專案二
	03-07-遊戲程式設計-程式專案三
	03-08-遊戲程式設計-程式專案四
	03-13-電腦圖學導論
	03-14-電腦圖學導論-Rendering
	03-15-電腦圖學導論-專案
	03-16-電腦圖學導論-程式專案一
	03-17-電腦圖學導論-程式專案二
	03-18-電腦圖學導論-程式專案三
	03-21-3D遊戲設計
	03-22-3D遊戲設計-Graphics-Pipeline
	03-23-3D遊戲設計-專案
	03-24-3D遊戲設計-程式專案一
	03-25-3D遊戲設計-程式專案二
	03-26-3D遊戲設計-程式專案三
	03-27-3D遊戲設計-程式專案四
	03-28-3D遊戲設計-程式專案五
	03-29-3D遊戲設計-程式專案六
	03-30-3D遊戲設計-程式專案七
	03-31-學生成果分頁
	03-32-教學成果節錄

