
Vis Comput
DOI 10.1007/s00371-013-0908-z

ORIGINAL ARTICLE

Robust and efficient adaptive direct lighting estimation

Yu-Chi Lai · Hsuan-Ting Chou · Kuo-Wei Chen ·
Shaohua Fan

© Springer-Verlag Berlin Heidelberg 2014

Abstract Hemispherical integrals are important for the
estimation of direct lighting which has a major impact on
the results of global illumination. This work proposes the
population Monte Carlo hemispherical integral (PMC-HI)
sampler to improve the efficiency of direct lighting estima-
tion. The sampler is unbiased and derived from the popu-
lation Monte Carlo framework which works on a popula-
tion of samples and learns to be a better sampling function
over iterations. Information found in one iteration can be
used to guide subsequent iterations by distributing more sam-
ples to important sampling techniques to focus more efforts
on the sampling sub-domains which have larger contribu-
tions to the hemispherical integrals. In addition, a cone sam-
pling strategy is also proposed to enhance the success rate
when complex occlusions exist. The images rendered with
PMC-HI are compared against those rendered with multi-
ple importance sampling (Veach and Guibas In: SIGGRAPH
’95, pp 419–428, 1995), adaptive light sample distributions
(Donikian et al. IEEE Trans Vis Comput Graph 12(3):353–
364, 2006), and multidimensional hemispherical adaptive
sampling (Hachisuka et al. ACM Trans Graph 27(3):33:1–
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1 Introduction

When rendering a physical scene, we can separate the light-
ing effect into two components: direct lighting and indirect
lighting. Direct lighting controls the main theme of the ren-
dered image and is the main factor of the final result. Indi-
rect lighting affects the small details of the result such as
color bleeding and is important to perceptual correctness.
Traditionally, direct lighting is estimated using Monte Carlo
methods, but how to increase the efficiency of rendering is
still the main research topics in the global illumination com-
munity. This work presents a sampling technique that sig-
nificantly improves the rendering efficiency for direct light-
ing. The sampler is derived from the population Monte Carlo
(PMC) sampling framework, which is a technique that adapts
sampling distributions over iterations according to the infor-
mation collected in previous iterations.

Traditionally, the primary tool for direct lighting esti-
mation is importance sampling based on the surface bidi-
rectional reflectance distribution functions (BRDFs) [15] or
light sources [1]. And the choice of the importance func-
tions has large influence on the estimation. It is hard to find
a good important sampling function for all shading points.
Although multiple important sampling (MIS) [20] can relieve
this issue with a weighting scheme for samples generated
from candidate functions which may be possibly good, MIS
may waste precious samples on those not-ideal candidate
importance functions. There are adaptive algorithms [5,10]
which dynamically adapt the sample distribution function for
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direct lighting estimation. However, these methods may be
sub-optimal for the usage of the light sampling strategy or the
requirement of extra efforts for the construction and update
of an auxiliary data structure. Therefore, this work proposes
the population Monte Carlo hemispherical integral (PMC-
HI) sampler to dynamically adjust the choice of importance
functions in order to improve sampling efficiency. The sam-
pler iterates on a population of samples which are initial-
ized using stratified MIS sampling on each light to estimate
the initial hemispheric integrals on a point. Any information
available at this stage can then be used to dynamically adapt
a kernel function that produces a new population to approach
the ideal importance functions. The sampler can, for instance,
avoid over-sampling a light source from a surface point
within its shadow, or a BRDF specular lobe that makes no
contribution. Furthermore, the sampler can also guide sam-
ples toward important illumination directions found by pre-
vious samples, without adding bias. Our PMC-HI do not
require an extra data structure in the adaptation process, has
low adaptation cost and can generate good results with min-
imum extra cost. At the end, we have compared the images
rendered with PMC-HI against those rendered with MIS [20],
and adaptive light sample distribution (ALSD) [5], and mul-
tidimensional hemispherical adaptive sampling (MDHI) [10]
on several scenes. PMC-HI can have improvement in render-
ing efficiency.

The remainder of this paper is organized as follows: Sect. 2
reviews a number of work related to this algorithm. Section 3
gives a short overview of the population Monte Carlo method.
Section 4 presents the concept and detail of the PMC-HI
sampler. Section 5 demonstrate the applications of the PMC-
HI sampler. Section 6 gives a short discussion of using the
PMC-HI sampler. Finally, Sect. 7 gives the conclusion of our
algorithm.

2 Related work

Here we focus on a specific area of related work: sampling
for hemispheric integrals. For an overview of Monte Carlo
rendering in general, see Pharr and Humphreys [15].

There is a large body of work on computing hemispheric
integrals (direct lighting), mostly concerned with importance
sampling functions. Veach’s thesis [19] provides a descrip-
tion of the basic methods and analysis of variance. Impor-
tance functions are commonly based on surface BRDFs [15]
or light sources [1]. Recent advances include wavelet-based
importance functions for environmental lighting [4], and
resampling algorithms [2,18] that avoid visibility queries for
samples that are likely to be unimportant. However, the for-
mer is applicable only to environment maps, while the lat-
ter throws away samples and still requires a-priori choice
of importance functions. No existing importance sampling

approach for hemispheric integrals offers adaptable impor-
tance functions. Multiple important sampling (MIS) [20] is
the general choice for alleviating this problem by generat-
ing a sample based on light sources and the surface BRDF
and the estimated direct lighting is weighed based on its sam-
pling probability of both methods. It generally generate good
results but the sampling mechanism may have chances to
waste samples on the low-contribution sampling functions.

Work on adaptive PDFs for importance sampling has
focused on path tracing or irradiance caching applications.
Dutré and Willems [6] used piecewise linear functions to
determine shooting directions out of light sources in a parti-
cle tracing application. Dutré and Willems [7] used piecewise
constant functions and Pietrek and Peter [16] used wavelets
to build adaptive PDFs for sampling gather directions in
path tracing. A diffuse surface and piecewise constant PDF
assumption is required to reduce the number of coefficients
to a manageable level, and even then very high sample counts
are required. It is important to note that a bad approximation
can increase variance. Lafortune and Willems [11] used a 5D
tree to build an approximation to radiance in the scene, and
then use it for importance sampling in a path tracing frame-
work. The same problems with sample counts and approxi-
mation errors arise in their work. Our algorithm works with
arbitrary BRDFs and uses a low-parameter adaptive model
to minimize the sample count required to control adaption.

Adaptive algorithms have also been suggested for shadow
computations. Ward [21] proposed an algorithm for scenes
with many lights, where shadow tests for insignificant lights
are replaced by probabilistic estimates. Ward’s approach
works best with many light sources (tens or hundreds)
while our technique works best with few sources. Ohbuchi
and Aono [14] adaptively sampled an area light source
(which introduces bias). They achieved good stratification by
employing quasi-Monte Carlo (QMC) techniques to place the
samples. Donikian et al. [5] introduced the multi-pass adap-
tive light sample distribution(ALSD) algorithm to dynam-
ically adapt the sample distribution function for each light
based on its contribution to direct lighting in a many-light
scene. The light sampling strategy may miss important fea-
tures of BRDFs and the variance of estimation grows when
the portion of glossy surface increases. Therefore, our algo-
rithm do the adaptation in choosing the sampling strategy
among the BRDFs and light sources to lower the variance.
Hachisuka et al. [10] has proposed multidimensional adap-
tive light sampling (MDHI) to adapt sample distribution
according to the variance of samples and then reconstruct a
function for the estimation of hemispherical integrals. How-
ever, the cost of building a Kd-Tree and looking up a node
through the Kd-Tree is large and thus, the improvement in
rendering efficiency is low. Therefore, this work proposes
PMC-HI to dynamically adjust the choice of importance
functions in order to improve sampling efficiency. The frame-
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work has low adaptation cost without the need of extra data
structure and the rendered results are generally good.

A sequential Monte Carlo algorithm, similar in spirit
to population Monte Carlo, has recently been applied by
Ghosh et al. [9] to the problem of sampling environment
maps in animated sequences. Their work exploits another
property of iterated importance sampling algorithms—the
ability to re-use samples from one iteration to the next—
and is complementary to our approach. Population Monte
Carlo is another class of iterative sampling methods and
has been introduced into the rendering community for adap-
tively distributing image-plane samples [12] and adjusting
the perturbation mechanism of a Markov chain during energy
redistribution process [13]. This work adapted from the corre-
sponding author’s thesis [8] follows the same iterative adap-
tation concept to choose a good sampling function for hemi-
spherical integration based on the information collected in
the previous iteration.

3 Population Monte Carlo (PMC)

The population Monte Carlo algorithm [3] as shown in Fig. 1
is an iterated importance sampling scheme. Assume that we
have a population of samples denoted by {X (t)

1 , . . . , X (t)
N },

where t is the iteration number and N is the population size,
and we wish to sample according to the distribution propor-
tional to f (x). Line 1 creates the population with a known
sampling algorithm to jump-start the algorithm. In each iter-
ation of the algorithm, a kernel function, K (t)(x (t)|x (t−1)),
is determined (line 3) using information from the previous
iterations. The kernel function is responsible for generating
the new population, given the current one. It takes an exist-
ing sample, X (t−1)

i , as input and produces a candidate new

sample, X̂ (t)
i , as output (line 5). The distinguishing feature

of PMC is that the kernel functions are modified after each
iteration based on information gathered from prior iterations.
The kernels adapt to approximate the ideal importance func-
tion based on the samples seen so far. The weight computed
for each sample, w

(t)
i , is essentially its importance weight.

The resampling step in line 7 is designed to cull candidate

Fig. 1 The generic Population Monte Carlo algorithm

samples with low weights and promote high-weight samples.
Resampling is not always necessary, particularly if the kernel
is not really a conditional distribution. In our PMC-HI algo-
rithm, we did not use the resampling step. Fan [8] gives a
detailed discussion about the analysis of unbiasedness, con-
sistency and variance for the PMC framework and interesting
readers can refer to the thesis for more details. Several steps
are required to apply PMC to rendering problems:

– Decide the sampling domain and population size. Com-
putational concerns and stratification typically drive the
choice of the domain.

– Define kernel functions and their adaption criteria. This
is the most important task, and we give examples for our
applications and suggest some general principles in the
discussion. For rendering applications two key concerns
are the degree to which the kernel supports stratification
and whether it works with a small population size (as low
as 4 in our hemispheric integrals sampler).

– Choose the techniques for sampling from the kernel func-
tions and the resampling step. The deterministic sampling
we use significantly reduces variance much like stratifi-
cation.

The following sections describe our sampler in detail, and
a general discussion on PMC for rendering problems before
we conclude with results.

4 PMC-HI: adaptive hemispheric integral sampling

Hemispheric integral samplers generate incoming directions,
ω′, at a surface point, x. One application is in direct lighting,
which assumes that the light leaving a surface point, L(x, ω),
can be evaluated by the following integral, composed of terms
for light emitted from and reflected at x:

L(x, ω) = Le(x, ω) +
∫

�

f (x, ω, ω′)dω′ (1)

where Le(x, ω) is light emitted at x, � is the hemisphere of
directions out of x and f (x, ω, ω′) is the light reflected at x
from direction −ω′ into direction ω:

f (x, ω, ω′) = L in(x,−ω′) fr (x, ω, ω′)| cos(θ ′)| (2)

where L(x,−ω′) is the light arriving at x from direction ω′,
fr(x, ω, ω′) is the BRDF, and θ ′ is the angle between ω′ and
the normal at x.

A standard importance sampling algorithm for L(x, ω)

samples directions, {ω′
1, . . . , ω

′
n}, out of x according to an

importance function, p, and computes the estimate:

L̂(x, ω) = 1

n

n∑
i=1

f (x, ω, ω′
i )

p(ω′
i )

(3)
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Fig. 2 a The rendered results of the Checkerboard scene using PMC-
HI, ALDS, MDHI and MIS. This is a scene constructed to demonstrate
how the optimal sampling strategy varies over an image. The checkers
contains diffuse and glossy squares, with near-pure specular toward the
back and rougher toward the front. There are two light sources. b Are
maps which show how the mixture component weights for PMC-HI
vary over the image, after two iterations. Bright means high weight.
From left to right: α

(2)
L1 , the left light’s weight; α

(2)
L2 , the right light’s

weight; α
(2)
BRDF; and α

(2)
cone, which can show its usage for generating

more samples for glossy surfaces. The large light dominates in regions
where no light is seen in a glossy reflection, while the right light is
favored in nearby diffuse squares. The BRDF component is favored only
when the large light is specularly reflected at a pixel. The images are
quite noise-free for such small sample counts (32 total samples per esti-
mate), indicating that the adaption mechanism converges to a consistent
result

The variance of this estimator improves as p more closely
approximates f , and is zero when p is proportional to f .

In the local direct lighting situation, one common choice
for p is proportional to L in(x,−ω′) fr(x, ω, ω′)| cos(θ ′)| or a
normalized approximation to it. An alternative is to break the
integral into a sum over individual light sources and sample
points on the lights to generate directions [15, §16.1]. In
an environment map lighting situation, the wavelet product
approach of Clarberg et al. [4] currently provides the best way
to choose p. However, none of these individual importance
functions behaves well in all cases.

Figure 2a demonstrates the various difficult cases for
importance sampling. The floor consists of a checker pat-
tern with diffuse and glossy squares (with two types of gloss
settings). There are two lights, one large and one small. In
diffuse pixels, an importance function based on the lights
is best. In highly glossy pixels that reflect the large light,
BRDF sampling is best. For glossy pixels that do not reflect
light, light sampling is best, and rough glossy pixels ben-
efit from both BRDF and light sampling, but we have no
way of knowing this a-priori, and most practitioners would
use BRDF sampling. In rough glossy regions that reflect only
one light, sampling from the other light is wasteful, but again
most algorithms would sample equally or according to total
emitted power.

Multiple importance sampling (MIS) and bidirectional
importance sampling address many of these problems, by try-
ing several importance functions and combining their results.
While this does very well at reducing variance, it is wasteful
in cases where one of the importance functions is much bet-

ter than the others and could be used alone. Other techniques
assume knowledge of which strategy will dominate where.

PMC-HI is a sampler that generates directions out of a
point by adapting a kernel function to match the integrand
of interest—L in(x,−ω′) fr(x, ω, ω′)| cos(θ ′)| in the direct
lighting case. For example, the lower images in the bottom
in Fig. 2 indicate the relative usefulness of different impor-
tance functions at each pixel. Furthermore, the PMC frame-
work enables important samples from one iteration to guide
sampling in subsequent iterations.

4.1 The PMC-HI Kernel function

Each direct lighting estimate takes place at a single surface
point and is only one small step in a larger computation. The
same surface point, and hence the same target function, fr,
essentially never re-appears. We choose to adapt on a per-
estimate basis, which avoids the need to store information
about the adaptation state at the surface points and interpo-
late to find information at new points. Hence, the number of
samples on which to base adaption is low and the number of
samples on which to consistent results is high. At one shading
point, the mixture is

K (t)
HI (ω

(t)|d(t), β(t)) = α
(t)
BRDFhBRDF(ω(t))

+
∑

l

α
(t)
lightl

hlightl(ω
(t))

+ α(t)
conehcone(ω

(t)|d(t), β(t)) (4)
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where hBRDF is the BRDF-based importance function which
should be a good approximation to fr, hlight is the light-
source-based importance function for each light and hcone is
the importance function which samples based on important
sample directions from the previous iteration and used to cap-
ture good sampling directions. The cone function samples a
direction uniformly within a cone of directions with axis d(t)

and half-angle β(t), which is set based on the population in
the previous iteration. The motivation for this term is because
when complex occlusions exist, the estimation may still have
a high failure rate for those samples which choose the right
importance sampling functions. Therefore, it is helpful to
generate samples based on those successful generated sam-
ples to increase the success rate. It is particularly useful for
situations like partial shadowing where previous samples that
found visible portions of the light generate more samples that
also reach the light.

The population in PMC-HI is a set of sample directions
out of the surface point we are estimating. The population
size must be large enough to obtain reasonable estimates for
the α

(t)
k values at each iteration but not so large as to increase

computation time unnecessarily. We typically use N = 2m,
where m is the number of mixture components. This is a
sufficient size to see the benefits of adaption.

4.2 Adapting for PMC-HI

An initial population of N samples, {ω′(0)
1 , . . . , ω

′(0)
n0 }, is gen-

erated using α
(0)
cone = 0 and the other α

(0)
k equal and summing

to one. A deterministic mixture sampling is used to select
the number of samples from each component. Each sample
is tagged with the mixture component that was used to gen-
erate it, and their importance weights are computed:

w
(0)
i =

f
(

x, ω, ω
′(0)
i

)

K (0)
HI

(
ω

′(0)
i

) (5)

There is no resampling step for direct lighting. The sample
size is so small that resampling tends to unduly favor high-
weight directions at the expense of others, thus reducing the
degree to which sampling explores the domain. Instead, the
cone mixture component is used to incorporate the informa-
tion from previous samples.

The new component weights, α(1)
k , can now be determined

along with the d(1) and β(1) parameters for hcone. The cone
direction d(1) is found by taking a weighted average of the
t = 0 population samples, with weights w

(0)
i . The cone size is

set to the standard deviation of those samples. The component
weights are set based on the sample importance weights:

α
(t)
k =

∑
i∈Sk

w
(t−1)
i∑n

j=1 w
(t−1)
j

(6)

where Sk is the set of samples that were generated using
component k. In the first iteration there is no sample from
the cone perturbation, so we set α

(1)
cone = 0.2 and adjust the

other α’s by a factor of 0.8 to make them all sum to one.
We now begin the next iteration. A new set of samples

is generated using deterministic mixture sampling from the
kernel K (t)

HI (ω
(t)|d(t), β(t)), weights are computed, and the

kernel function is updated based on the weights. To form
the estimate, we use Eq. 3, with each sample, ω′(t)

i , weighted

by w
(t)
i from Eq. 5.

5 Results and comparisons

All statistics provided in this section are done with a personal
laptop whose CPU is Intel i7-3517U 2.4 GHz with 4 GB
DDR3 memory. This section will present the results of using
our PMC-HI to estimate the direct lighting of several scenes.
These results are compared with multiple importance sam-
pling (MIS) [20], adaptive light sample distribution (ALSD)
[5], and multidimensional hemispherical adaptive sampling
(MDHI). We choose to have the same number of samples per
pixel for all operators and manipulate the number of shadow
rays per light to let the running time of all operators be almost
the same.

We choose to test our algorithm in four test scenes:
Checkerboard (CK), Budda (BU), Jack-o-lattern (JA) and
Yearright (YR). CK, BU, JA and YR are rendered with a res-
olution of 1,920 × 1,080, 1,080 × 1,920, 1,920 × 1,080 and
1,920 × 1,080. The timing and error comparisons with MIS,
ALDS and MDHI appear in Table 1. The results show that
PMC-HI gains an improvement in rendering efficiency over
all algorithms. The performance of MDHI is generally not
good due to the requirement of extra efforts for the construc-
tion and update of a Kd-tree. Figure 2 shows the rendered
result of the CK scene using PMC-HI, ALSD, MDHI and
MIS. ALSD generates direct lighting samples based on the
light sampling strategy and thus, it does not perform well in
the glossy regions of the Checkerboard scene. Figure 3 shows
the cropped results of the area marked with the red rectangle
using PMC-HI, ALSD, MDHI and MIS. The PMC-HI oper-
ator can get much better results in the glossy regions than
ALSD do because the sampling strategy for each shading
point can be adjusted according to the lighting configura-
tion and surface material properties. Our sampler can also
improve rendering efficiency over MIS because less samples
are distributed to less important sampling strategies. Figure 4
shows the rendered results of the BU scene using PMC-HI,
ALSD, MDHI and MIS. ALSD generates direct lighting sam-
ples based on the light sampling strategy and thus, it does
not perform well in the glossy regions such as the head of
the budda. The PMC-HI operator can get better results for
regions in partial shadowing as shown in the cropped images
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Table 1 This shows the statistics of measurements when render-
ing Checkerboard (CK), Budda (BU), Jack-o-lattern (JO) and Year-
right (YR) with MIS [20], ALSD [5] and MDHI and the PMC-HI
sampler

Image Method # SPP # SRL T(s) Err Eff

CK MIS 8 18 873.67 2.93e−3 0.391

ALSD 4–4 12 906.59 1.56e−2 0.071

MDHI 8 2–2 1,021.98 8.53e−3 0.115

PMC-HI 8 4–12 846.12 1.37e−3 0.863

BU MIS 8 10 585.29 1.43e−2 0.119

ALSD 4–4 4 525.72 7.17e−2 0.026

MDHI 8 8–8 565.08 1.04e−1 0.017

PMC-HI 8 3–5 516.29 2.06e−3 0.94

JA MIS 8 18 1,239.09 6.84e−3 0.117

ALSD 4–4 16 1,271.58 4.79e−3 0.164

MDHI 8 5–5 1,335.91 1.17e−1 0.006

PMC-HI 8 4–12 1,211.12 3.79e−3 0.217

YR MIS 16 18 1,359.58 2.81e−4 2.62

ALSD 8–8 11 1,493.34 1.46e−3 0.459

MDHI 16 4–4 1,436.50 5.15e−3 0.135

PMC-HI 16 4–12 1,325.98 1.23e−4 6.13

When rendering, we use the same number of samples per pixel (SPP)
for all direct lighting operators and manage the number of shadow rays
per light (SRL) to let the running time be close. For the ALSD, N1 − N2
in the SPP column denotes the number of samples per pixel in the first
and second iterations and ALSD must have two image-plane iteration
in order for light sampling adaptation. For the MDHI and PMC-HI
algorithms, N1 − N2 in the SRL column denotes the number of rays
in the initial and adaptive iterations. T denote the time to finish ren-
dering the entire image, Err denote the average mean square error and
E f f denotes the efficiency of the estimator which is defined as 1

T ×Err
in [19]. Generally, we would like to have an estimator whose compu-
tational time and estimated error are both small and thus, when given a
fixed computational time, a more efficient estimator should get a lower
error

in the bottom of Fig. 4. Figures 5 and 6 shows the rendered
result of the JO and YR scenes using PMC-HI, ALSD, MDHI
and MIS. The PMC-HI, ALSD and MIS operators can get bet-
ter results in the bright-light-shading regions from the light
shedding out of the holes of the Jack-o-lantern. The PMC-HI
operator can improve the result of regions in partial shadow-
ing in the Yearright scene.

6 Discussion

The PMC-HI sampler can be viewed as generalizations of
MIS which is a special case of deterministic mixture sam-
pling. It corresponds to fixing the αk weights ahead of time,
which fixes the number of samples from each function. The
MIS balance heuristic results in the same estimator that we
use. We improve upon MIS by adapting the weights over
time, which avoids wasting samples on unimportant compo-
nent functions.

Many PMC kernels in the literature are mixture models.
Mixtures are typically formed by combining several com-
ponents that are each expected to be useful in some cases
but not others. The adaption step then determines which are
useful for a given input. Mixtures allow otherwise unrelated
functions to be combined, such as the light source and BRDF
importance functions in Eq. 4. If an environment map was
present, we could even include the wavelet importance func-
tions of Clarberg et al. [4] in the mixture. Typically, the com-
mon rule of choosing importance functions applies here also:
when f is a product of several unrelated functions, then a
good choice of mixture components is something propor-
tional to each factor.

The most notable limitation of PMC is the high sam-
ple counts required when the kernel has many adaptable

Fig. 3 This shows four images the cropped results of the CK scene which focuses on the glossy square and is marked with the red rectangle in a
when using PMC-HI, MDHI, ALSD and MIS
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Fig. 4 a–d The rendered results of the BU scene rendered using PMC-HI, MDHI, ALSD and MIS respectively. e Shows the cropped results of
the bottom part of the budda

Fig. 5 a–d The rendered results of the JO scene when using PMC-HI, ALSD, MDHI and MIS

parameters. This precludes, for instance, using one com-
ponent per light when there are many lights. Such a strat-
egy would be appealing for efficiently sampling in complex

shadow situations (some components would see the lights,
others would not), but the sample count required to ade-
quately determine the mixture component weights would be
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Fig. 6 a–d The rendered results of the YR scene when using PMC-HI, ALSD, MDHI and MIS

too large. Instead we use a single mixture component for all
the lights and rely on the cone perturbation component to
favor visible lights. This does not work well if the illumina-
tion sources are widely spaced.

To achieve the consistency criterion of PMC discussed
in [8], the numbers of sample for the convergence iteration
must approach infinity. In our algorithm, we can separate
the sampler into two stages: base adaptation and conver-
gence. The base adaptation stage aims at determining a proper
weight for each kernel function and then the kernel functions
are used to generate a consistent result in the convergence
stage. Therefore, the numbers of sample for the base stage is
small and the numbers of sample for the convergence itera-
tion is large for generating consistent results.

7 Conclusion

We have shown how the hemispheric integral estimation can
be derived from the PMC framework. The algorithm learns
to be an effective sampler based on the results generated in
early iterations. This alleviates one of the greatest problems
in Monte Carlo rendering: the choice of importance func-
tions and other parameters. Although this work currently only
applies the PMC-HI sampler for direct lighting estimation,
the sampler could be used in any situation where estimates
of an integral over the hemisphere are required. For exam-
ple, irradiance caching would possibly benefit greatly from
the sampler in the computation of each cached value. PMC
is just one approach from the family of iterated importance
sampling algorithms [17]. The Kalman filter is another well-
known example. Common to these techniques is the idea of
sample reuse through resampling and the adaption of sam-
pling parameters over iterations. Computer graphics certainly
offers further opportunities to exploit these properties.
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