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Abstract—Spatio-temporal content, cascades of physical and
procedural events, is one of the most indispensable elements
in games and animations nowadays. Generally, designing such
scenes needs expertise to achieve both procedural rules and
targeting criteria such as complexity and difficulty, thus being
time-consuming and manpower intensive. Therefore, we propose
a general framework that combines the L-system and the Monte
Carlo Tree Search (MCTS), named L-MCTS, whose automatic
workflow, integrating expertise and domain knowledge, is capable
of massive production with targeted criteria. More specifically, we
break the content space of near-infinity degrees of freedom into
three parts: forming cascading events with L-system, positioning
elements with inverse embedding, and activating the content with
initial conditions. Furthermore, we adjust Monte Carlo Tree
Search (MCTS) to systematically and coherently sample plausible
instances through the decomposed space. Finally, we demonstrate
its generality of our framework with three different applications
and evaluate their effectiveness and efficiency through several
experiments and user studies.

Index Terms—L-system layout representation, Monte Carlo
Tree Search generation and evaluation, difficulty evaluation,
procedural content generation, layout generation

I. INTRODUCTION

Spatio-temporal content driven by cascading events is com-
monly seen in games and animations. For examples, the chain
reaction is such a visual treat that leaves people breathless
when components trigger one another (left of Fig. 1), and the
billiard trick shots that strike all object balls into the pockets
in one shot is also appealing to the audience hence being
referenced as ”artistic pool” (right of Fig. 1). However, gen-
erating such content with physical plausibility is challenging,
particularly when additional indicators such as appealingness
or difficulties must be considered in practice. Furthermore,
designing such content usually requires expertise and domain
knowledge, and thus, it is difficult to automate the workflow.
All the mentioned issues make the spatio-temporal content
generation a manpower-intensive and time-consuming task in
the fast-paced multimedia industry. Therefore, this work aims
at developing a general framework that automatically generates
massive amounts of plausible content without the presence of
experts.

Content modeling and animation synthesis formulate space-
time constraints as optimization problems, and Monte Carlo
Optimization (MCO) is one of the successful solver for
modeling trees and buildings [1], [2], generating levels and
layouts [3]–[7], and synthesizing space-time animations [8]–
[10]. However, random exploration of the plausible space
is time-consuming. Therefore, our framework systematically

Fig. 1. This shows the examples of our targeting spatio-temporal content,
where the left shows the chain reaction that propagates the interaction through
various components and the right shows the ”artistic pool” that challenges the
player to strike all the objects balls in one shot.

parameterizes the spatio-temporal content in three aspects: to
describe and deduce the element-wise interactions, to describe
the element-wise spatial information with the geometric pa-
rameters, and to trigger the cascading events with possible ini-
tial conditions. In order to search for plausible spatio-temporal
content, we also involve the simulation phase, which verifies
validness and objectiveness of the content, resulting in a 4-
level Monte Carlo Tree Search, named as L-MCTS. However,
it is impractical and inefficient to search the extremely high-
dimensional geometric parameters. Thus, we involve the do-
main knowledge to develop inverse embedding for narrowing
parameter searching into a smaller space. Even though our L-
MCTS allows an arbitrary function of plausibility, designing a
proper metric to reflect objectiveness, such as appealingness,
is still an unsolved problem. We free ourselves from domain
dependency by using expertise expression and questionnaire
postulation to reveal subjective opinions along with domain-
free statistics, such as tree complexity and parameter varia-
tions.

After conceptual deduction and development, we have
applied our framework on three applications, one-shot-all-
eliminate breakout clone, chain reaction, and one-shot-all-
sink billiard while having experiments and user studies to
determine their proper parameters. The implementation can
massively generate breakout levels, chain reaction setups, and
billiard layouts with the target degree of the level difficulty,
visual complexity, and playing difficulty, respectively. While
comparing against other baselines, our framework can effec-
tively enhance the search efficiency for content generation.
We have also verified the effectiveness of our designed visual
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Fig. 2. Our L-MCTS uses MCTS to hierarchically explore the spatio-temporal content space. The system is divided into 4 phases from left to right, L-
string expansion, which describes and deduces the sequential interactions, spatial positioning that applies inverse embedding for better searching efficiency,
activating initialization which picks up the initiation conditions, and validation simulation that evaluates the generated content, while the evaluation result
is backpropagated to the tree for concentrating searching on more promising parameters.

complexity and difficulty metric through a set of user studies.
Overall, our framework achieves the following contributions.

1) We propose L-MCTS, which incorporates L-system
and Monte Carlo Tree Search (MCTS), as a general
framework to automatically generate massive amounts
of spatio-temporal content that fulfills the user-defined
objectiveness.

2) We further enhance the search efficiency by decom-
posing the spatio-temporal content into the L-system-
described cascading sequence, spatially varied geometric
parameters, and activated initial conditions for system-
atic exploration.

After all, our system can effectively and automatically gen-
erate spatio-temporal instances under user specified degree of
criteria.

II. RELATED WORKS

The proposed L-MCTS framework aims at automatic gen-
eration of various spatio-temporal content. Therefore, the fol-
lowing focuses on the core related works of content generation,
which include L-system-based procedural modeling, space-
time constraint simulation, and Monte Carlo optimization.

L-system-based procedural modeling first comes into our
mind. Research [11]–[13] apply rewriting and turtle interpre-
tation of L-system grammars to describe various branching
plants and others [14], [15] extend the concept to describe
variant objects. It is compact and able to construct various
models with a small set of derived parameters along with its
goodness at systematic and hierarchic deductions of all possi-
ble variations. However, to the best of our knowledge, there are
only few grammar descriptions and production rules designed
for temporal events [5]. Since spatio-temporal content consists
of sequences of semantic interactions, for example, the se-
quence of ball-to-ball and ball-to-cushion collisions in billiard,
it seems to be reasonable to derive L-system representations
for these interactions because of its easy deduction. However,
there are still challenges listed as the following. Traditional
L-system only records interactions and components involved,
but it does not consider their spatial positioning and temporal
actions. Even though its variation, the parametric L-system,
is capable of representing the continuous parameters through

the production rules, the complex physical phenomena makes
plausible parameters and initial conditions seeking difficult and
even impossible. Therefore, we adapt Monte Carlo Tree Search
(MCTS) to explore the possible spatio-temporal space to seek
reasonable solutions.

Space-time constraint simulation aims at achieving key-
framed design and control using space-time constraints in
order to generate artistically satisfied animations. There are
various applications, including controlling multi-body trajecto-
ries [8]–[10], [16], [17], manipulating skeleton motions [18]–
[20], editing deformable objects [21], [22], and control-
ling fluid [23], [24]. Generally speaking, the constraints are
achieved by either local greedy control [16], [20], [24] or
global optimization [18], [22], and we summarize them as the
inverse solutions to model the content distribution with pre-
defined constraints. However, these methods generally require
domain knowledge to formulate domain-dependent solutions,
i.e., they cannot be easily transferred to other applications
as mentioned by Chenney et al. [8]. Different from the
aforementioned methods, our system first designs forward
sampling of cascading interactions, interaction-wise geometric
parameters, and initial conditions as a general and domain-free
framework. At the same time, we take inverse postulation to
derive inverse embedding with simplified procedure models for
interaction-wise prediction in order to accelerate the searching
procedure. Furthermore, past studies target at generating one
artist-satisfied animation, but ours is intended for massive
production of animations achieving certain target goals with
variation.

Monte Carlo Optimization (MCO), including Monte
Carlo Tree Search (MCTS), obtains the optimal result with
designated strategies using random sampling [25]. This con-
cept is widely used in various domains such as the distribution
of trees and buildings [1], [2], music composition [5], 2D
platform level design [3], [6], collision layout synthesis [4] and
the consensus threshold of preference relations [26]. However,
randomly jumping around the plausible space is inefficient and
cannot further explore those possibly important regions for
traditional MCO. Therefore, Chenney et al. [8] apply Markov
Chain Monte Carlo sampling in the parameter space for better
efficiency while Anderson et al. [17] extend the concept
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to flock simulation. MCTS is also introduced for coherent
exploration and acceleration. The most famous application
lies in the opponent AI of Go for AlphaGo and AlphaGo
Zero [27]. In addition, Qi et al. [28] propose a fast MCTS
pruning algorithm to achieve efficient spacecraft trajectory
optimization, and Hong et al. [29] propose a sampling strategy
for decision variables to solve the large-scale multiobjective
optimization via MCTS. We summarize the above methods
as the forward solutions to model the content distribution
based on sampling strategies. As far as we know, there exists
no work representing the spatio-temporal content for forward
methods. Thus, we develop an L-system representation to
encode the interactions and embed geometric and physical
parameters to construct the possible spatio-temporal space in
order for coherent and thorough exploration. Furthermore, we
also enhance search efficiency by incorporating the inverse
concept to have a hybrid solution, which have the benefits of
both the forward generality and inverse efficiency by reducing
the effectively searching domain.

x

y

1 2 3

(a) elements

(b) interactions

(c) geometric configurations (d) initial conditions

Fig. 3. This shows two spatio-temporal examples of domino toppling and
billiard shooting. The content generally consists of 4 parts, which are (a)
elements, such as dominoes and balls, (b) interactions, such as domino
topplings and ball collisions, (c) geometric configurations, such as the
position of dominoes and balls, and (d) initial conditions, such as the initial
force of toppling and striking.

III. PROBLEM FORMULATION

This work aims to design a fully-automatic framework
which is capable of massive generation of spatio-temporal
content given a targeted goal. Similar to space-time con-
straints [18], this work defines the spatio-temporal content
as cascading interactions, denoted as interactions, between
objects, referred as elements, where elements are placed on
designated positions, denoted as geometric configurations,
and the interactions follow designated procedural rules such
as physics while triggering with designed initial conditions
in the beginning. The degree of goal achievement, f(·), is
evaluated based on the process of interactions from triggering
until all objects stop moving, and it is fully application depen-
dent while its evaluation criteria, which are usually empirical,
requires domain knowledge and expertise. Furthermore, this
work sets it to 0 when an interaction fails. Fig. 3 shows two
examples, a domino run and a one-shot-all-sink billiard set-
up. In a domino run, the process is defined as a success if all
dominoes are toppled in once, or to be a failure vice versa.
Similarly, a successful one-shot-all-sink billiard set-up is de-
termined by whether all object balls are sunk into the pockets
in one shot or not. Furthermore, a metric can be designed to

determine whether the set-up reaches the target goal or not,
such as difficulty for the billiard set-up. To simplify the later
discussion, we denote the spatio-temporal space, consisting
of all plausible instances, ai, as A = {· · · ,ai, · · · } whose
ai = 〈ei, ti,xi, zi〉, where ei, ti, xi, zi represent the instances
of elements, interactions, geometric configurations, and
initial conditions, respectively. Also, the evaluation metric is
written as f(ai) for any given instance ai, and the desired
content is referred to that satisfies the equation f(ai) > λ, for
λ being the targeted goal.

Accordingly, this work treats the targeted generation as
sampling from the content space. To be specific, a plausible
candidate could be any kind of setting under the application
scope, including those that may provide undesired or even
failure results. In the above exemplar domino run, a possible
solution implies a set-up with any given domino number
arranging in any designed pattern, even those fail to topple
all dominoes in once or fail to meet the target standard. Since
the involved number of objects, the placed locations, and etc.
are all free parameters, the plausible content space is extremely
high dimensional. Therefore, this makes it difficult to find
solutions for a targeted goal without systematic exploration.
As a result, the next section first describes the concept to
semantically and parametrically decompose the content space
for systematic and coherent exploration. Then, we adapt Monte
Carlo Tree Search (MCTS) to efficiently sample the decom-
posed content space for efficient solution seeking. Finally, we
apply the concept on three applications.

IV. PLAUSIBLE CONTENT SAMPLING

This work rephrases the targeted problem as a sampling
problem which can be clearly stated as ”how to sample a
desired instance from A in a massive amount”. The preference
of an instance is evaluated with f(ai) for any given ai, while
such a metric completely depends on the goal to achieve and
is not restricted to a specific equation. For such a problem, we
follow the approach proposed by Chenney et al. [8] and let
pw(ai) model the probability that the content instance ai might
arise in the simulation environment and pw(ai|f(ai) > λ) for
those that even meet the user desire. We also follow their
derivation to have

p(ai) ∝ pw(ai)pf (ai) (1)

where p(ai) models the distribution of the plausible and
desired instances in the content space, and pf (ai) depends
only on how well the content satisfies objectiveness. According
to the definition of ai and the independencies among its
compositions in general, the equation can be further rewritten
as

p(ai) ∝ pw(li)pw(xi)pw(zi)pf (ai). (2)

where li is the combination of ei and ti. This work proposes
a new framework, named L-MCTS, which incorporates the L-
system into our adapted Monte Carlo Tree Search (MCTS),
to model p(ai). Intuition behind this design is two folds.
On one hand, experts usually design such content through a
systematic mechanism to semantically compose relative pa-
rameters instead of sampling these parameters independently.
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That is, both the elements and interactions are arranged into
the chronological order while additional elements as well
as interactions are inserted into the current sequence in an
iterative fashion. Such a definition not only helps to sample
ei and ti with unconstrained dimensionality but also better
present the progressive process of the content design. On
the other hand, modelling each component independently is
pointless due to the dependencies between the components.
For example, a domino could never topple its next target if
it is placed too far away or not on the falling direction of
the previous domino. As a result, the L-MCTS is designed to
perform semantic and hierarchical exploration of the content
by incorporating the L-system representation while combining
inverse solutions during the search to greatly improves the
search efficiency. More specifically, the search tree is sep-
arated into four parts: the L-string expansion that models
pw(li), spatial positioning that models pw(xi), activating
initialization that models pw(zi) and validation simulation
that models pf (ai). With the backpropagation mechanism, L-
MCTS concentrates on more promising sub-trees and models
p(ai) efficiently. We show the algorithm of L-MCTS in
Algorithm 1.

Algorithm 1 L-system Monte Carlo Tree Search (L-MCTS)
1: Adesired = {}
2: repeat
3: ai = SelectToLeaf(tree);
4: f i, reward = Simulate(ai);
5: if f i > λ then
6: Adesired ← ai;
7: end if
8: Backpropagate(tree, reward);
9: until Terminate

A. L-system Semantic Interaction Sequence and Tree

L-system is a string rewriting mechanism and is perfectly
suitable to represent the cascades of interactions due to its
strength in describing sequential branching behaviors [5], [14].
Additionally, L-system expands the string in a hierarchical
fashion which fits the traditional MCTS usage. In general, L-
system is expressed as G = 〈V,Ω,P〉 with V being a set of al-
phabets for symbolization, Ω being the axiom, i.e., a word, and
P signifying a set of rewriting rules. The produced L-string
is composed of a sequence of alphabets where the alphabets
reveal ei and their order reveals ti, forming the alternative
term li that embeds both the elements and interactions. Even
though the L-system, G, completely depends on the application
and cannot be generalized into a common form, we involve one
commonly used rewriting rule to split the interaction sequence
into multiple branches with brackets. That is, the sub-string
wrapped in the brackets belongs to a single interaction path
and would not affect other branches, resulting in the form of
str0[str1][str2] · · · [stri] where str1 to stri are the sub-strings
branching from the last alphabet of str0.

To derive an L-system from the given application, there
exists no single unique answer and the derivation might
greatly vary under different objective goals. This work intends

to show its deduction ability for coherent and hierarchical
exploration with three exemplar L-systems based on their
respective domain knowledge in Section V, but we do not
intend to develop a general L-system derivation for cascade
events. Although the L-string itself can well represent the
elements and interactions, we would like to further deduce it
into the tree form, named as the interaction tree, to describe
the spatio-temporal content in a hierarchical fashion. Such a
tree not only provides a more intuitive visualization of the
interactions but also eases the later process when performing
inverse embedding (please refer to Section IV-B for more
details). To turn an L-string into a tree, the process starts from
the first alphabet and iteratively appends the next alphabet as
a child to the current alphabet. The tree splits into branches
when the bracket is met, with the sub-string in the bracket
forming one single sub-tree. The deducing example can also
be found in Section V for different applications.

B. Inverse Embedding

There are two common ways to derive the corresponding
actions from a distribution of pw(xi): one is the forward
derivation, and the other is the inverse postulation. Taking
the one-shot-all-sink billiard set-up as an example, forward
derivation first specifies all possible configurations, including
positions and the cue strike conditions, and then runs physical
simulation to determine the successfulness, i.e., estimate the
probability; on the other hand, inverse postulation uses the
collision physics to estimate the possible travelling path of
each ball to fulfill the pocketing requirement while deriving the
corresponding positions and initial conditions at the same time.
The forward, however, necessitates the exploitation of almost
infinite space, resulting in computational intensity. On the
other hand, the inverse could also be impractical since all path
trajectories would be intractable if complex physics involved.
As a practical solution, coherent sampling algorithms, such as
Markov chain Monte Carlo (MCMC) and Monte Carlo Tree
Search (MCTS), are proposed to effectively reduce the amount
of exploration. However, a pure forward solution seems to
be inefficient when the domain knowledge can be applied
to greatly reduce the explored space, resulting in a more
plausible and efficient algorithm. For example, the possible
position of an object ball can be restricted to a sector area
in front of the pocket, while the forward strategy requires to
sample all possible positions on the entire table. Therefore,
we propose to incorporate the inverse concept into MCTS,
which is in general a forward solution, as a hybrid method to
model pw(xi). More specifically, inverse embedding, derived
based on the expertise, is performed to reduce the sample
space of xi for any given L-string. However, the amount of
domain knowledge and the level of procedural factors taken
to postulate the forward parameters is a trade-off between
computational complexity and sampling efficiency. This work
intends to show its strength in searching space reduction and
sampling efficiency enhancement with three domain-specific
inverse postulations shown in Section V, but it is not our
intention to provide a general inverse solution for constraint
animations.
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C. L-system Monte Carlo Tree Search (L-MCTS)

Traditional MCTS expands the search tree with four stages
of selection, expansion, simulation, and backpropagation as
defined in the following:
• Selection selects successive children from the root to a

leaf that is not yet fully explored.
• Expansion appends children with not yet investigated

states to a leaf.
• Simulation performs a complete playout from the current

until a result or predefined state is achieved.
• Backpropagation updates the probability distribution

based on the evaluated objectiveness and is always per-
formed right after the simulation operation.

However, some modifications are incorporated into the pro-
posed L-MCTS in order to better fit our applications. First, we
only perform the simulation when all parameters are decided,
including li, xi, and zi, while traditional MCTS performs
simulation at any node with the following moves decided
randomly. More specifically, we keep performing selection and
expansion until simulation is available. The key to such modi-
fication is that the number of parameters to sample is relatively
constant in our case, compared to traditional cases in which
the number of moves to finish the game is usually difficult to
predict. Second is the node-choosing strategy. Traditionally,
MCTS performs selection based on a designed metric to
balance exploration and exploitation. The most popular metric
is the Upper Confidence Bounds to Trees (UCT) [30], which in

general can be formulated as cj = ej

nj +
√

2
√

ln(nj↑1)
nj , where j

stands for any node from the tree, nj stands for the simulation
count of the j-th node, nj↑1 stands for the simulation count for
the parent of the j-th node, and ej

nj implies the empirical mean.
An intuition is that for an untraversed node, the UCT evaluates
to infinity, and therefore, traditional MCTS chooses to perform
expansion prior to selection if there are unexplored states.
However, as we are sampling parameters from continuous
spaces, such behavior would never lead the search to converge.
Hence, we slightly modify the definition of Selection and
Expansion into ”stepping down the hierarchy by picking one
child”, while the former only picks the existing child and the
latter appends a new one. Also, a new strategy is proposed for
deciding whether selection or expansion is performed based
on Cj =

∑
cj↓1, where cj↓1 represents all children of the

given j-th node. The concept behind the strategy is a trade-off
between exploitation and exploration, i.e., we choose selection
if the current parameter sets are promising enough to generate
desired results; otherwise choose expansion for exploring other
possibilities. Technically, we choose to perform selection if
Cj ≥ Cα. Such a threshold Cα might vary under different
search scenarios, and hence, it is decided empirically for
different applications proposed in this paper. We introduce the
experiment involved to decide the threshold in Section VI-A1

Another difference is that the simulation result of L-MCTS
ranges between [0, 1] to imply the preference instead of simple
win or lose. More specifically, we have ∆e = Max(1 −
|λ−f(ai)|

β , 0) and add ∆e to ej for nodes on the path from
root to leaf when performing backpropagation. λ reflects the
objectiveness, but its value is application-dependent and not

normalized to the range [0, 1]. Therefore, this work uses β to
normalize the application-dependent objectiveness deviation,
and its value is decided empirically.

The process to sample ai can be separated into three
phases: L-string expansion, spatial positioning, and activating
initialization while each distributes in the search tree from top
to down respectively, and different actions are taken to sample
a new parameter set during different phases.
• L-string expansion aims to sample the L-strings by

inserting alphabets into the string iteratively. For any
given node in this phase, the number of its child is one
plus the number of its L-string variants with one rewriting
rule applied, where the additional node represents to step
down to spatial positioning with the current string. Since
the node number in one layer is finite in this phase, we
follow the traditional strategy to select a child with the
largest cj . Also, to avoid the string growing infinitely, we
simply restrict the string length to nmax, which depends
on the search goal and application.

• Spatial positioning aims to place the elements that come
from L-string expansion into the space. Any given node
in this phase represents the position of one corresponding
element, where its expansion is conditioned by the inverse
embedding mechanism. The propagation direction can
be either forward, i.e., from root to leaves given the
interaction tree, or inverse vice versa. In general, both ap-
proaches are acceptable, but the better one is application-
dependent.

• Activating initialization aims to decide initial conditions
to trigger the spatio-temporal content. Practically, this
part is relatively simple as the initial conditions are
independent with each other in common cases. Thus,
it results in a single-layer that samples all parameters
in once. Furthermore, the phase could be optional if a
sequence does not require any explicit triggering action.

D. Objective Function

The objective function directly defines the search goal
of L-MCTS, and it could be either objective or subjective
and usually fully application-dependent. Even though our L-
MCTS does not constrain it to any specific form, it should
be positively correlated with the number of interactions, i.e.,
the length of the sequence, to facilitate coherent exploration
of MCTS. As examples, we show the possible derivation
of objectiveness by incorporating objective metrics, such as
the animation elapsing time, i.e., application-independent, as
well as subjective metrics, such as the visual complexity,
i.e., application-dependent in Section V. Furthermore, we also
demonstrate a procedure to derive the subjective evaluation
based on questionnaire postulation of user preferences in
Section V-B4 and Section VI-A2.

V. APPLICATIONS

Our L-MCTS is designed to be a general framework of
massive production for various applications. To demonstrate
its generality, we apply it on three different applications, in-
cluding one-shot-all-eliminate breakout clone, chain reaction,
and one-shot-all-sink billiard. The following sections introduce
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them respectively along with their specific L-system, inverse
embedding, activating initiation, and objective function derived
from their unique domain knowledge. For brevity, we omit the
unit of length if it is measured in meter. Also, the details of
each application are provided for reproducibility, while some
design choices are omitted due to length issue. Readers can
refer to the supplemental Website1 for more details.

A. One-shot-all-eliminate Breakout Clone

The breakout clone is a famous video game that a player
controls the moving paddle located at the bottom to make the
ball hit the bricks and destroy them. The ball bounces when
hitting either the paddle, a brick, or the top, left, and right
wall, and the player loses when the ball hit the bottom. As
shown in the left of Fig. 4, we derive a simple toy example
from it as our first validation attempt. We let the ball destroy
all bricks without another bounce from the paddle, i.e., once
the ball is emitted from the paddle, it never lands but destroys
all bricks aligned horizontally.
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IWBW BB WB
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Fig. 4. This shows an example of our one-shot-all-eliminate breakout clone
with its representative L-string. In addition, the inverse embedding technique
according to the reflection rule is also visualized in the right bottom.

1) L-string Expansion: Based on the bouncing behaviors,
we can semantically categorize them into two bouncing types,
wall bounces, W , and brick bounces, B. We also use I to
denote the emission position of the ball. The system always
begins with the axiom, IB, and extends the level by iteratively
inserting consecutive bounces into the current string:
• The wall bounce inserts a W into any position of the

current string, except for the very front and the very back.
• The brick bounce inserts a B into any position of the

current string, except for the very front.
An example string as well as its possible level is shown in
Fig. 4.

2) Spatial Positioning: Accordingly, the face normal at the
bouncing point is the only affecting factor of ball movement,
i.e., the outgoing direction is based on the reflection of perfect
elastic collision where the incidence angle equals the reflection
angle. To decide the element positions, we start from the root
of the interaction tree and propagate to its descendant in a
forward order. More specifically, we decide both the element
position, pi, and outgoing direction, ~vi, for the i-th node based
on the element type:

1Website: http://graphics.csie.ntust.edu.tw/pub/LMCTS/

• I: pi represents the emission point randomly chosen along
the paddle moving line, while ~vi is the emission direction
whose angle between the vertical axis is sampled within
the range of [−65◦, 65◦].

• W: pi represents the bouncing point of the wall located
as the first intersection of the ray p(i−1) + ~v(i−1) to the
three walls, while ~vi is the bouncing direction derived
from the reflection rule, i.e., to have the reflection angle
θR equal to the incidence angle θI .

• B: pi represents the bouncing point of the brick randomly
chosen along the outgoing path of the previous node,
while ~vi is the bouncing direction derived from the
reflection rule.

After processing all nodes, we place the paddle as well as
other bricks with their center locating at pi. We demonstrate
the spatial positioning mechanism in the right bottom of Fig. 4.

3) Initialization: To initiate the break-out clone, the ball
is emitted into the scene from the center of the paddle with
an outgoing direction. Since the paddle position and outgoing
direction is already determined in the spatial positioning phase,
there are no extra factors sampled in the initialization phase.

4) Objective Functions: We evaluate the breakout clone
level in terms of difficulty to figure out the correct bouncing
path to eliminate all bricks in once for the given level. It
is harder to plan the bouncing path if the two bouncing
points are farther, i.e., the difficulty should be proportional
to the distance between two bouncing points. If the number
of bounces increases, the difficulty increases accordingly, i.e.,
the difficulty should be the accumulation of difficulty at
each bouncing. As a result, we can express the difficulty as
fd =

∑
αi · (1 + 0.2 · li

ldiag
) for i 6= 0, where l represents the

distance between two consecutive bounces, ldiag denotes the
diagonal length of the scene, and α is the bouncing weight
which is set to 15 for W and 10 for B due to the fact that a
brick is smaller and harder to predict its bounce. Furthermore,
we have β = 0.25 · λ to normalize the reward.

B. Chain Reaction

Chain reaction is the most classic application of spatio-
temporal content because of its cascading events to propagate
interactions from one component to another. In general, com-
ponents involved in chain reaction can be anything as long as
it makes cascading propagation continue, and the allowable
interactions between components are totally implementation
dependent. Here, we choose several commonly seen compo-
nents, such as balls and dominoes, to produce chain reaction
animations of targeting visual complexity. As shown in Fig. 5,
we restrict the interaction path to a 2D plane in general, while
the path might split into multiple ones where each lies on a
2D plane paralleling to each other.

1) L-string Expansion: We denote the minimum unit to
propagate the events as a component and semantically derive
the L-system representations by assigning an alphabet to
each component while the production rules are then carefully
designed for plausible propagation. To demonstrate our frame-
work, we select 5 different types of components visualized in
Fig. 6. The first component, B, is composed of a ball placed
on a slope, and the ball rolls down the slope. Second, we



IEEE TRANSACTIONS ON CYBERNETICS, VOL., NO., 2023 7

BL PB[ C] PB[ C] PB[ C]D

Fig. 5. This demonstrates an example of our chain reaction set-up with its
representative L-string, where the interaction paths are designed to lie on 3
2D planes marked with red, green, and blue, respectively. The action starts
from the ball that rolls down the slope, B, striking 3 balls on the platform,
L, into the cups, and activating their respective pulley sets, P . While two of
them drop into the cup to end their sequences, the other topples the domino
run, D, which ends up with the last domino falling into the cup, C.

have the domino set, D, that is straightly placed along the
x-axis and can be toppled from the first domino. Third, we
have the pulley set, P , with one side being the cup and the
other being the baffle, while the baffle is heavier than the cup
to block the ball from rolling down the slope. In other words,
the pulley is only triggered when something falls into the cup
and makes the ball start rolling down the slope because the
baffle gets removed. Additionally, a platform with multiple
balls placed on it, referred as L, is included to perform the
branching behavior. More specifically, balls on the platform
can be struck into different directions and split the interaction
path into multiple ones where each lies on a new 2d plane.
Lastly, we have the single cup, C, to be the end of the chain
reaction, i.e., the cascading events end when the previous
component falls into the cup. For each component, we propose
a corresponding production rule to insert a new instance into
the current set-up as following:

• The dominoes, D, can only be toppled by the rolling ball
or another domino set and cannot trigger multiple balls
on the platform, which means D can only be inserted
after B or D and not before L.

• The pulley set, P, and the ball on slope, B, are grouped
together as PB. Since the pulley can be triggered by
falling components including the domino and ball, PB
must be inserted after B, D or L.

• The platform with multiple balls, L, can only be
triggered by the rolling ball and only be used to trigger
the pulley set, i.e., we insert L after B and before P .
Also, due to the branching behavior of L, the interaction
path splits into n paths with n balls placed on the
platform, with one sub-path being the original sub-string
after the insertion point and others being initialized to
be C. To simplify the set-up, we restrict n to be 3 and
the branching behavior can only be inserted to the main
branch as illustrated in the top left of Fig. 6.

• The cup, C, can only be placed at the end of the string
and no production rule inserts C into the string directly.

The chain reaction always begins with BC and iteratively
applies the insertion rules to extend the interaction paths.

Platform with Multiple Balls

Pulley Set

Ball on Slope

Dominoes

Cup

1-1 vL 1-1 vB

δx

δy

1-1 vP

rout

rin
3

2

rout

rout

rin

rout

rin

rout

rin rin
rout

Fig. 6. This visualizes the 5 components involved in our chain reaction
application, where the VL, VB , and VP decide the placing directions along the
x-axis. Also, we define the reference input, rin, and the reference output,
rout, for each component to align two components with additional offset δx
and δy for the inverse embedding mechanism.

2) Spatial Positioning: To increase the behavior variety, we
involve additional control parameters for each component as
below.
• The dominoes are parameterized by the domino number,
nD, within the range [4, 10], and the interval between
each domino, lD, within the range [0.2, 0.3].

• The pulley is parameterized by the distance between two
pulleys, lP , within the range [2, 5], the distance between
the pulley and its carrying object, lc and lb, within the
range [0.5, 1], and the facing direction vP to be either
{−1, 1} to represent the alignment along the x-axis.

• The ball on slope is parameterized by the slope length,
lB , within the range of [1, 5], the elevation angle between
the slope and the x-axis, θB , within the range [26◦, 30◦],
and the facing direction vB to be either {−1, 1}.

• The platform with multiple balls is parameterized by
the facing direction vL to be either {−1, 1}. The first
ball would be put on the position which offsets 4 · r · vL
from the center of the platform along the x-axis, where r
represents the ball radius, and the followings are put on
the position which offsets 4

3 ·r ·αL from the center along
the z-axis, where αL is −1 for the second ball and 1 for
the third ball.

• The cup is not parameterized.
Generally speaking, we arbitrarily choose some parameters

to have an adequate sampling range for compact illustration.
For example, nD is chosen to have a reasonable length of
domino toppling; lP is selected to make the pulleys not too
far away. At the same time, the others are decided empirically
to provide acceptable success rate. For example, lB and θB
are chosen to provide adequate energy applied to the ball for
triggering the next component. Due to the length limitation,
those parameters, such as mass and dimensions, chosen for
producing the results are summarized in Appendix A.

To set up a chain reaction that can successfully propagate
the interactions to the end, it is difficult not to perform trial-
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and-error even for the experts because the involving physics
could be extremely complex. In fact, the experts usually place
components based on the intuition in the first place and
make small modifications according to the simulation result.
Following such a concept, we define rin and rout for each
component to represent the point of reference input and
reference output, visualized in Fig. 6, where the former one
indicates the point to successfully trigger the component, and
the latter one indicates the point that the component propagates
the interaction to its descending path at. When aligning two
reference points, in order to avoid component overlapping as
well as to handle the unpredictable behavior of physics, we add
an extra 2D random offset, (δx, δy), both sampled in the range
of [0.2, 1]. The overall workflow of spatial positioning begins
from the root and processes nodes in a forward order, while
each component is first parameterized and placed to the scene
by aligning its rin to previous rout using the above process.
The only exception is the root position which is randomly
sampled from the 3D space.

3) Initialization: The initial conditions determine how
much energy the chain reaction system has in the beginning.
While we always have the first component to be a B according
to our production rules, the initial conditions fully depend on
the initial height of the first ball. More specifically, we sampled
a distance ranging between [10, 20] that represents the height
difference between the ball and the slope.

4) Objective Function: Chain reaction is evaluated based
on two different metrics: ft simply reveals the elapsed time
from begin to end, and fc evaluates the visual complexity of
the set-up. ft helps to validate the effectiveness of the proposed
framework, and fc generally involves subjective opinions
and consensus. To the best of our knowledge, no existing
literature has ever formulated and postulated it. Therefore,
this work formulates it empirically based on the questionnaire
methodology introduced in Section VI and proposes to model
fc as

fc =
∑

H(i) + αgG(·), (3)

where H(i) evaluates the component-wise complexity for the
i-th component, G(·) evaluates the layout complexity as a
global term, and αg = 0.4 is the empirical weight to balance
between the local and global term. The component term, H(i),
is defined as H(i) = ci · ki, where c is the scaling factor
to normalize the complexity contribution into the same range
for each type, and k is the complexity contribution. We have
k = K

Rmax
where K is the value of the control parameter

which has the most dominant affection in complexity, and
Rmax is the maximal allowable value of the control parameter.
Accordingly, we set c and K as follows:
• B has K to be the slope length, and sets ci = 1.00.
• D has K to be the domino number, and sets ci = 2.75.
• P chooses K to be the distance between two pulleys, and

sets ci = 1.22.
• L chooses K to be the branch number, and sets ci = 2.81.
• C has K = 1 because the cup is not parameterized, and

sets ci = 0.1.
The global term is modelled as G(·) = wb ·gb+wd ·gd+wv ·gv ,
where gb represents the tree balance, gd represents the depth of

the interaction tree, gv represents the number that movement
direction changes, and wb, wd, and wv are the weights of each
term set to be 1.88, 2.25, and 1.88, respectively. The intuition
behind the balance term is to reveal the number of interactions
happened simultaneously because the system looks more com-
plex when there are more interactions happened in the same
time. Specifically we have gb =

∑ djavg

djmax
, where djavg and

djmax represents the average and maximal branch depth at the
j-th branching point where the branch depth is defined as the
depth from the branching point to either the leaf node or the
next branching point. All the above mentioned weights are
decided based on the user study discussed in Section VI-A2.
The only exception is cup’s weight set to 0.1 because it
remains static and unchanged throughout the animation. Also,
we set β = 2 · λ to normalize the reward.

C. One-shot-all-sink Billiard Layout

Billiard is a well-known sport that strikes balls into the
pockets with a cue. Among such a category, there is a special
variant that challenges the player to sink all object balls
in only one shot, which is referred as the one-shot-all-sink
billiard. To design a plausible one-shot-all-sink layout such
as the one shown in the right top of Fig. 7, we define
several terminologies at first hand to systematically explore
the domain. Ghost ball is an abstract concept that we use to
represent the event of ball-to-ball collision, and a kiss shot or a
borrow shot is referred to the pocketing event while the object
ball from the former shot directly goes into the pocket and the
one from latter shot collides with other balls before pocketing.
We apply the proposed content generation framework on Pool
Ace, which is the commercial game product provided by the
International Gaming System (IGS), with Unity 2019.

1) L-string Expansion: Conceptually, experts use the colli-
sions among the cue, objects, cushions, and pockets to describe
billiard interactions. Therefore, to semantically derive the L-
system with the billiard application, we conclude two collision
types, which are the ball-to-ball collision denoted as G and the
ball-to-cushion collision denoted as C, as well as two pock-
eting strategies, which are the kiss shot referred as P and the
borrow shot referred as X . Also, we involve some alphabets to
represent the ball position, which are I , S, and O for the begin
position of the cue ball, the end position of the cue ball, and
the begin position of the object ball respectively. We design
the production rules that insert shot combinations, including
the cushion and kiss shots, into the existing trajectory, while
the borrow shot is always transformed from the kiss shot in
specific situation. More specifically, the production rules are
listed as below:
• Cushion inserts an extra cushion shot, C, on any moving

trajectory, i.e., after I , O, C, or G but not between GO.
• Kiss inserts an extra kiss shot, GOP , on any moving

trajectory and results in a splitting branch. If the insertion
happens before any kiss shot, i.e., P , change it into X
as the shot becomes a borrow shot.

The system always begins with the axiom, IG[S][OP ], and
extends the set-up by iteratively applying one of the two
production rules each time. When transforming the L-string
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into the interaction tree, O is omitted because GO always
show up together. An example string and its possible layout
is shown in Fig. 7, with its deducing interaction tree placed
on the right.

2) Spatial Positioning: In Pool Ace, all the balls are forced
to remain on the table and no bouncing happens during the
play, so we design the inverse embedding techniques based on
such assumption to postulate the initial positions of the cue
and objects. We first decide the end position and propagate to
the rest of the balls in a backward order, due to the fact that
pockets are constrained to fixed positions on the table. That is,
the positions are decided by processing each node from leaves
to root, given the interaction tree transformed from an L-string.
To decide the position of leaf nodes, we randomly sample
from the 6 pockets for P and X , and from the circle region
centered at its sibling for S, with the radius set to 1

3 of the table
diagonal. On the other hand, positions of the non-leaf node are
decided based on the inverse embedding mechanism to narrow
the sampling space into a more reasonable subspace. While
precisely predicting the ball trajectory is computationally
expensive, we perform inverse embedding by simply assuming
particle balls and elastic collisions without frictions to avoid
costly computation. More specifically, position of a non-leaf
node is sampled based on the following two constraints. The
first one is the circle constraint that is only applied when there
exists two child nodes. One circle is constructed by connecting
its two children as the diameter, and the node is constrained
to the circle. The second one is the direction constraint that
is applied to each individual child node separately. A fan area
is constructed by spanning θp degrees to two sides of the
direction ~n, and the node is constrained to be inside the area,
where θp and ~n vary for the different child node:

• P/X: ~n represents the angle bisector and θp = 22.5 for
pockets on the corner and θp = 45 for others.

• G: ~n represents the outgoing direction passing the child
node from the circle that G is sampled from and θp = 5.

• C: ~n represents the reflection path and θp = 0.

When multiple constraints are applied, the node is sampled
from the intersection of all constraints. The mechanism is
demonstrated in Fig. 7 with the given L-string and the final
spatial distribution is shown on the right top.

3) Initialization: The initial condition refers to the cue
hitting behavior and is defined as H(~f, p) in our billiard
application, where ~f represents the directional applied force
and the p reveals the hitting point on the ball surface. In
general, the cue ball draws a curved trajectory before the first
collision if the applied force does not pass the ball center,
while the rotation velocity usually vanishes quickly due to the
friction, leaving the movement to be straight on the remaining
path.

4) Objective Function: After examining billiard instruc-
tions and books [31], [32], experts generally evaluate the dif-
ficulty by considering the path planning as well as the striking
execution. Furthermore, the striking effect is exponentially
waded off by the friction, so the initial cue hitting effects
become negligible for later collisions. Therefore, the difficulty
metric, fd, is empirically designed to be a summation of the
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Fig. 7. This shows an exemplar of our one-shot-all-sink billiard application
as well as its spatial positioning process: (a) the position of leaf nodes are
sampled from their candidate space, (b) the ghost ball G with two children
is placed on the intersection of the circle and the fan areas. (c) the cushion
C with one single child is constrained by the fan area and the table edge. (d)
the ghost ball G with one cushion child is placed on the intersection of the
circle and the reflection direction that satisfies the equation of φ = θ.

striking term and the collision term:

fd = αG(·) +
∑

H(i), (4)

where G(·) denotes the cue-hitting difficulty, H(i) denotes the
collision-wise difficulty measurement for each collision, and
α is a user specified weight to balance the two, set to 0.5 in
all billiard experiments in this paper.

For the striking term, we assume that spin and power are
the two most effective factors to predict the ball trajectory and
have G(·) = ‖~f‖l2G, where ‖~f‖ is the applied power in newton
(N ), and lG is the distance between the center and hit point
in cm. For the collision-wise term, the intuition is that the
more consecutive collisions happen before a specific collision
or the longer the distance a ball travels from the previous
collision, the harder it is to predict and execute the desired
process. Moreover, while the exiting direction deviates more
from the entering, it is also harder to aim. All three factors
pull together to determine the measurement of the collision i as
H(i) = liHn

iA(·), where liH represents the traveling distance
from collision i−1 to i, ni represents the accumulated number
of consecutive collisions before i, and A(·) is measured based
on the angle information depending on the following collision
types:
• Cushioning happens between a ball and a cushion. A(·)

is measured as sin(θiI)Max(
tan(θiI)

tan(θiR)
,
tan(θiR)

tan(θiI)
), where θiI

and θiR represent the incident and reflective angles. In
general, it is more difficult and unpredictable when θiI is
larger and the difference between θiI and θiR is larger.

• Colliding happens between two balls. We use the cut an-
gle θic, which is the angle between the incoming direction
and the reflection axis, and the tail angle θit, which is the
angle between the outgoing direction and the extension
of the incoming direction, as 1

cos(θic)·cos(θit)
because it is

easier to aim while the enter and exit directions are near
parallel.

• Pocketing refers to a ball entering a pocket. We use the
pocket angle, θiP , which represents the angle between the
angle bisector of the pocket and the entering direction,
to measure A(·) as 1

cos(θiP )
, due to the intuition that it is
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easier to hit the corner of the pocket and pop out if θiP
is larger.

The lengths and angles involved in the collision-wise difficulty
measurement are visualized in Fig. 8. We set β = 0.25 · λ to
normalize the reward.

θP
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Fig. 8. This illustrates the collision-wise difficulty metric calculated based on
the traveling lengths and collision angles where the lengths liH is the distance
between parent and node collisions, the incident angle θiI and the reflective
angle θiR are used for cushioning, the cut angle θic and tail angle θit are
selected for ball-to-ball collision, and the pocket angle θiP is chosen when
pocketing.

VI. EXPERIMENTS AND RESULTS

After implementing three targeting applications, we conduct
several experiments and user studies to decide their applied
parameters. Furthermore, we compare our proposed method
to three baselines in the aspect of content generation with
the targeted goal. Finally, since objective functions are im-
portant and abstract, we conduct user studies to validate their
effectiveness. Due to length limitation, readers can refer to the
supplemental Website1 for more details.

A. Parameter Selection

Generally, our applications have several user-tuning param-
eters of either an exploration/exploitation trade-off or user’s
subjective preferences, which cannot be directly decided. As
a result, we conduct experiments and user studies for proper
selection.

1) Selection Threshold: Our L-MCTS chooses to perform
selection or expansion depends on whether Cj is greater
than the selection threshold Cα. The choice of Cα itself is,
however, a trade-off between exploration and exploitation. A
smaller Cα makes the system focus more on the previously
explored results while a larger one tends to exploit other new
parameter spaces. To decide the threshold, we first evaluate
the search with different Cα’s to figure out its actual impact
on the search task. More specifically, we perform the search
tasks with different Cα’s and evaluate the desired rate ργ ,
which is defined as the number of desired instances out of the
total number of searching. A desired instance is defined as ai

that satisfies f(ai)−λ
λ < γ, where the left term represents the

error percentage and the right is the error tolerance. We test
with 5 different Cα’s, which are {2.0, 2.5, 3.0, 3.5, 4.0}, on the
chain reaction with its error tolerance γ set to 0.05. For each,
we search 5000 iterations, and set the maximum string length
nmax to be 8 and the desired goal λ to be 8 seconds. The left
of Fig. 9 shows the desired rate under different Cα’s across the
search, while Cα = 2 generally fails to perform the search,
and Cα = 3 outperforms others when the iteration number
increases. The right of Fig. 9 shows the exploration rate across

the search, which is defined as the none-repeated rate of the
parameters we sampled from the continuous space. In general,
such rate indicates the number of explored parameters and
decreases more when the Cα is smaller. Accordingly, we
choose Cα = 3.0 for the chain reaction due to its significant
performance gap against others and its acceptable exploration
rate after 5000 iterations. Similarly, we apply the same process
to set Cα to 3.0 and 1.85 for the breakout and billiard,
respectively.
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Fig. 9. We visualize the desired rate (left) and the exploration rate (right)
under different Cα while searching. The iteration number is denoted along
the x-axis. For the y-axis, we have the desired rate, defined as the number
of instances whose error percentage less then 0.05 out of the total number
of searching, in the left, and have the exploration rate, defined as the none-
repeated rate of the parameters we sampled from the continuous space, in the
right. The experiment result of different Cα is visualized in different colors
denoted in the legend.

2) Subjective Weightings: In Section V-B4, we select sev-
eral factors to be our indicator of the visual complexity and
formulate them into Eq. 3 as our complexity metric. However,
the weight of each factor remains undetermined because they
are subjective preferences. Therefore, we designed a user study
to ask users to sort them based on visual complexity from
the least dominant to the most dominant. It was conducted
on 16 subjects, aged from 20 to 29. Among them, there
were 15 males and 1 female, and also there were 7 majoring
in computer graphics and 2 having experience in animation
design. At the beginning of the user study, we showed 6 chain
reaction set-ups to the users and explains the meanings of the
7 factors. Factors of the 4 components, including B, D, P ,
and L, are explained as the definition listed in Section V-B4.
Besides, gb is given as ”whether the branches split from same
origin are equally long or not”, gd as ”the longest path in
the scene”, and gv as the ”direction change among the set-
up”. Then, the users were asked to perform the sorting via
the factor dominance on visual complexity according to their
own subjective opinions. The given orders are treated as the
raw scores. Since the scope of gb, gd, and gv involved the
the entire content generation, we categorized them as global
factors, for others being the local factors, and compute the
orders among the local/global factors to acquire the local
scores and the global scores. We demonstrate the scores under
different domains in Fig. 10 along with their averages and
standard deviations. We use the average of local scores and
global scores as the weights, while the corresponding weight
of B and P is further multiplied with 0.5 to half the providing
contribution since they are always bounded together, and the
weight of C, which is not involved in the user study, is directly
set to 0.1 since it remains static during the chain reaction.
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Later, Section VI-C validates their effectiveness.

Slope Length Domino Number Pulley Distance Branch Number Tree Balance Facing Direction Interaction
Tree Depth

2.69 3.75 3.25 4.06 4.56 4.38 5.31

2.00 2.75 2.44 2.81 1.88 1.88 2.25

Fig. 10. This shows the histograms of our subjective weighting study for
the chain-reaction visual complexity metric along with their average (the red
line) and standard deviation (the red zone). Blue histograms represent the raw
scores, while the black ones represent the local scores and the green ones
represent the global scores.

B. Efficiency Enhancement in Content Generation

Since the L-MCTS is claimed as the forward solution
incorporating the inverse mechanism, we evaluate the system
in two aspects:

1) The choice of the sampling strategy: We compare the
MCTS with the random sampling to show the strength
in systematical and coherent exploration.

2) The effectiveness of the inverse embedding: We com-
pare the search efficiency of the framework with inverse
embedding against the one without the mechanism, i.e.,
randomly placing elements into the scene.

Accordingly, we construct three baselines based on the com-
binations of (1) and (2) and denote them as (a) random
sampling with inverse embedding (RSIE), (b) MCTS with-
out inverse embedding (MCTS) and (c) random sampling
without inverse embedding (RS). Technically, random sam-
pling also samples a solution based on the 3 phases of L-
string expansion, spatial positioning, and initialization, while
L-string expansion samples one single string from all possible
L-strings restricted by the maximum string length of nmax,
and the rest of two phases performs random sampling based
on the selected L-string. Those, that do not involve inverse
embedding, choose elements’ position from the entire space,
while in chain reaction, the infinitely large space is restricted
to a cube with a dimension of [100, 100, 2]. We apply all 4
methods to our three exempler applications, with the targeted
goal and maximum string length configured as following:
• One-shot-all-eliminate Breakout Clone: we set target

difficulty to 75, Cα = 3.0 and nmax = 6.
• Chain Reaction: we set desired time duration to 10

seconds, Cα = 3.0 and nmax = 10.
• One-shot-all-sink Billiard: we set target difficulty to

1000, Cα = 1.85 and nmax = 6

We use the same Cα for both our L-MCTS and the MCTS.
For each method, we randomly generate 5000 sets and record
the number achieved under the targeting error percentage, γ,
of 0.05, 0.025, and 0.01. As shown in Table I, our L-MCTS
outperforms others with a significant gap. Accordingly, we can
conclude with two folds. On one hand, 3 compared methods
show low searching effectiveness to demonstrate the difficulty

TABLE I
THIS SHOWS THE STATISTICS OF GENERATION EFFICIENCY UNDER

SPECIFIC ERROR PERCENTAGES, γ , FOR 3 DIFFERENT APPLICATIONS
WHILE COMPARING OUR L-MCTS AGAINST THREE OTHER BASELINES.

Breakout Clone Chain Reaction Billiard

γ = 0.05 γ = 0.025 γ = 0.01 γ = 0.05 γ = 0.025 γ = 0.01 γ = 0.05 γ = 0.025 γ = 0.01

L-MCTS 4519 4347 683 2515 1468 501 2963 2775 854

RSIE 195 101 24 27 10 3 13 6 3

MCTS 4 2 2 0 0 0 4 2 1

RS 9 3 2 0 0 0 1 1 0

to sample goal-fulfilling instances while L-MCTS can enhance
this search efficiency using coherently hierarchical exploration.
On the other hand, the inverse embedding technique shows
significant impact on improving the search efficiency, but
the choice of the forward sampling strategy also plays an
important role to produce massive amounts of desired results.

C. Chain Reaction Complexity Metric

To evaluate whether the proposed subjective metric is
capable of revealing the viewers’ opinion, we conducted a
user study that asked the subjects to grade the chain reac-
tion scene based on the visual complexity. First of all, we
categorized the scenes into 5 complexity levels whose mean
complexity is 32.6 · 1.75i, i ∈ {1, 2, 3, 4, 5}. The category
was designed to be equally distributed within the minimum
and maximum complexity, which were both chosen based
on authors’ experiences. We generated 2 scenes from each
level with the error percentage threshold γ set to 0.05 as
the reference scenes. Also, we generated 2 scenes for each
level, resulting in 10 scenes in total, and denoted them as the
evaluation scenes. Due to the length limitation, here, we only
show one scene for i = 1, 3, 5 from the reference scenes and
the evaluation scenes in Fig. 11. During the user study, we
first showed the reference scenes to the subjects as well as
their designated visual complexity levels. Then, all participants
were asked to assign their subjective complexity level for all
evaluation scenes arranged in a random order in a 5-point
Likert scale manner, where 1 represented the least complex
and 5 represented the most complex. We conducted the user
study on 16 subjects who were aged between 20 and 29, with
15 males and 1 female, and there were 7 majoring in computer
graphics and 2 had experience in animation design. We sum up
all user assigned levels for each scene as its complexity scores,
shown in Fig. 12. It is obvious to see the user assigned level
is highly correlated to the designated level. To further justify
the assumption, we calculate the Spearman’s rank correlation
coefficient [33] between i and ī, for ī being the user assigned
level, and acquire ρ = 0.9833, p ≈ 0.0. The detailed equation
is provided in Appendix B. The interpretation of ρ > 0
shows that the user assigned level is positively correlated to
the designated level. In addition, a |ρ| closer to 1 indicates a
higher degree of correlation, and |ρ| > 0.7 is usually seen as
a strong correlation evidence [34]. Also, the p-value indicates
the probability to observe such result under the null hypothesis
being ρ = 0, and since p ≈ 0.0 < 10−3, it is statistically
significant to conclude that the proposed complexity metric
can reveal the viewers’ opinion.
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Fig. 11. This shows several examples of the reference scenes and the
evaluation scenes for the complexity study of the chain reaction.
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Fig. 12. This shows the user assigned complexity levels of chain reaction
scenes, while the designated complexity level is highlighted in red in the
legend.

D. One-Shot-All-Sink Billiard Layout Difficulty Metric

We have also conducted a user study to validate the diffi-
culty metric. We first categorized the layouts into 5 difficulty
intervals of [150+(i−1) ·210, 150+i ·210], i ∈ {1, 2, 3, 4, 5},
representing from very simple to very difficult based on
authors’ playing experience. Then, we generated 2 layouts
from each interval as the reference layouts and 3 layouts
from each interval as the evaluation layouts. Due to the length
limitation, we only show one layout for i = 1, 3, 5 from the
reference layouts and the evaluation layouts in Fig. 13. Prior
to the user study, we told participants the goal of one-shot-all-
sink as well as the hitting interfaces of the billiard application,
and let them play the game for 2 minutes to make sure all
participants be familiar with the game. We started the user
study by showing all reference layouts to the user as well
as their designated difficulty levels. Then, they were asked to
assign the difficulty level for all evaluation layouts arranged
in a random order in a 5-point Likert scale manner. At each
layout evaluation, we showed both the ball trajectory and the
striking video to the user, and let them have three trial plays
to reproduce the solution. After that, they gave the difficult
level. Such an experiment design intended to prevent the user
from solving the layout with a different solution. The user
study was conducted on 16 subjects who were aged between
22 and 26, with 15 males and 1 female, and there were 14
having experiences in playing the billiard in real life and 2 had
never played any billiard-related video games. We show the
result in Fig. 14, and calculate the Spearman’s rank correlation
coefficient to get ρ = 0.9191, p ≈ 0.0. Since ρ > 0.7 and
p ≈ 0.0 < 10−3, we can conclude that there exists strong
positive correlation between the user assigned level and the
designated level, which indicates that the proposed difficulty
metric is capable of revealing the player’s opinions.
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Fig. 13. This shows several examples of the reference layouts and the
evaluation layouts for the difficulty study of the billiard. We enlarge the
balls twice for better visualization.
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Fig. 14. This shows the user assigned difficulty levels of billiard layouts,
while the designated difficulty level is highlighted in red in the legend.

VII. CONCLUSION AND FUTURE WORK

This work proposes the L-MCTS as a general framework to
produce spatio-temporal content under the user-specified met-
ric, while experts are excluded from the workflow to achieve
the goal of automatic generation and massive production. The
framework involves the L-system to semantically model the
elements and interactions of the content, makes use of the
inverse embedding technique to improve the search efficiency,
and effectively explores the content space with the MCTS
sampling strategy. Our experiments show that the proposed
method is capable of generating massive amount of desired
content comparing to other baselines, and the generality is also
demonstrated by applying the framework to 3 applications.
However, there exists a few issues which are planned to
be solved in the future. First, we assume that the branches
are totally independent and do not affect each other, while
such assumption limits the possible interactions as well as
the content variation. For example, one single objective ball
can be hit with the cue ball multiple times before pocketing,
while such behavior cannot be represented by our system.
One possible solution might apply graph-based modeling for
interactions, but we would need to further develop the semantic
L-system denotation and deduction for it. Another issue comes
from the choice of the objective metric. This paper chooses all
involved metrics to be positively related to the string length,
while this assumption may not always be true in practice.
For example, measuring the similarities between two chain
reaction scenes is in general irrelevant with the string length.
Therefore, it is intriguing to validate the effectiveness of the
framework on more arbitrary metrics.
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APPENDIX A
COMPONENT PROPERTY IN CHAIN REACTION

Due to the fact that we simulate the chain reaction with
the unity built-in physical engine, we summarize the fixed
properties of each component for reproducibility.

All the balls involved in the application are identical to
have the radius being 0.075m and the mass being 10kg. The
dimensionality of each single domino is 0.18m×0.04m×0.3m
and the mass is 5kg. The radius of the cup mouse is 0.2m,
and its mass is 2kg, which is same with the baffle used in the
pulley set.

APPENDIX B
SPEARMAN’S RANK CORRELATION COEFFICIENT

The Spearman’s rank correlation coefficient between two
variables, X and Y , is calculated as

ρ =

∑n
i (xi − x̄)(yi − ȳ)√∑n

i (xi − x̄)2
∑n
i (yi − ȳ)2

, (5)

where the xi and yi are the rank of the raw data Xi and Yi,
and n is the sample size.
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