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APPENDIX A

CURVE INTERSECTION

For those lines and curves whose bounding boxes overlap

each other, their intersections are computed based their respec-

tive types:

1) Two lines: P̃ and Q̃ represent two lines defined in their

normalized implicit form of apx bpy cp 0 and aqx

bqy cq 0 where a2 b2 1. The intersection can be

determine by solving P̃ Q̃.

2) A line and a curve: P̃ is a line and Q u is a curve in

the form of Q u n
i 0PiB

n
i u where Pi xi yi are

the control points and Bni t denote the Bernstein basis

functions. The distance of a point to P̃ can be expressed

as d p apx bpy c and d u n
i 0 diB

n
i u where

di aPi x bPi y c. The intersections are defined as

d u 0 by solving a polynomial equation.

3) Two curves: P t and Q u represent two curves. Before

determining intersections among curves, we must define

the fat line of a Bézier curve which is the convex

boundary hull to bound the curve. In order to define

the fat line for Q u , we define its center line Q̃c as

the line segment connecting its end points Q0 and Qn.

When applying the convex hull property, a fat line Q̂ is

defined as a set of lines which parallel to Q̃c and can

most tightly encloses the control points of a given Bézier

curve as

Q̂ q dmin Q̃ q dmax (2)

where Q̃ q is a line parallel to Q̃c and passing through

q, qi Q̃c Qi is the distance from Qi to the center line,

and

dmin min d0 dn

dmax max d0 dn
(3)

The possible intersection interval on P t can be identi-

fied by Q̂.The intersections of Q̂ with P t can use the

method described previously to find the intersection of

aqx bqy cq dmin and aqx bqy cq dmax with

P t . The intersection parameters can determine the

possible intersection interval of P t and the portions of

P t outside the possible interval are removed. The left

portion of P t can be used to create another fat line

to find the possible intersection interval on Q u .The

process repeats until the area of the hull of P t and

Q u is smaller than our selected threshold Ts. Then,

the de Casteljau algorithm is applied to find the proper

line segment approximation of two curves and those

segments are used to determine the intersections.

After determining all intersections, our system uses these inter-

sections to decompose lines and curves into shorter segments

whose interior and exterior shading instructions are the same.

Fig. 4 shows an exemplar result of path intersection and

segmentation.

APPENDIX B

PATHS IMPLICITIZATION

[3] implicitizes a path and shades a pixel using a path insid-

e/outside test for resolution independency, but their algorithm
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cannot work for paths with composite coloring operations.

Our system overcomes this limitation by decomposing paths

in unifying-coloring-operation segments and encoding all pos-

sible coloring operations into a color texture to shade a pixel

using a similar path inside/outside test along with texture-

coordinate-based distance interpolation. Before discussing col-

oring texture construction, this section will first explain the

details of implicitizing a path segment.

All paths can be described as integral curves in the form of

f p k̃ p 3 l̃ p m̃ p where k̃, l̃, and m̃ are lines passing

through corresponding inflection points discussed later. Then,

we can use f p and k̃ p to evaluate whether a point is

inside/outside the path. Furthermore, when a point V is inside

the convex hull of a cubic Bézier curve, its location can be

expressed as barycentric interpolation of its four control points,

V 0 V 3. Similarly, its distance to a line L̃ ax by c can

also be barycentric interpolation of the distance of control

points to L̃. Therefore, we can compute and store the distance

to k̃, l̃, and m̃ as k, l and m for each control point and use

barycentric interpolation of these values for shading a pixel.

[3] shows that the type of a cubic curve is determined by the

number of inflection points which are points whose curvature

vanishes and can be defined as I t s t 3d1s
2 3d2ts d3t

2

where d1 d2 d3 a1 2a2 3a3 a2 3a3 3a3 , and

a1 a2 a3 c0
˙c3 c2 c1

˙c0 c3 c2
˙c1 c0 . To cate-

gorize the curve type, we need to evaluate the discriminant

of I as discr I d2
1 3d2

2 4d1d3 . According to d1, d2, d3,

and I, the path types and k k0 k3
t , l l0 l3

t , and

m m0 m3
t for four control points are determined as

follows:

1) If d1 0 and 3d2
2 4d1d3 0, it is a serpentine which

has three collinear inflection points lying on k̃ with

corresponding tangent lines l̃, m̃, and ñ passing through

those inflection points. Three inflection points occur

when the parameters of I t s are

tl sl d2
1

3
3d2

2 4d1d3 2d1

tm sm d2
1

3
3d2

2 4d1d3 2d1

(4)

and k, l, and m are determined as:

tl tm t3
l

t3m

tl tm
1
3
tl sm

1
3
tmsl t2

l
tt sl t2m tm sm

1
3

tl tm 2sm sl 3tm 2sm sl tl
2tl sm tm

2tm

sl tl sm tm sl tl
3 sm tm

3

2) If d1 0 and 3d2
2 4d1d3 0, it is a loop which has

one inflection point and one double point lying on k̃ and

the tangent lines passing through the double point as l̃

and m̃ and the tangent line passing through the inflection

point as ñ. The double point occurs when the parameters

of I t s are:

td sd d2 4d1d3 3d2
2 2d1

te se d2 4d1d3 3d2
2 2d1

(5)

and k, l, and m are determined as:

tetd t2e td tet
2
d

1
3

tesd setd tetd
1
3
te te sd 3td 2setd

1
3
te te 2sd 3td setd

1
3
se sd 2td te 3td 2sd

1
3
se te te 2sd 3td setd

1
3
sd td te sd 3td 2tetd

se te sd td se te
2 sd td se te sd td 2

3) If d1 0 and 3d2
2 4d1d3 0, it is a cusp with

inflection at infinity. Generally, a cusp curve has one

inflection point and one cusp point lying on k̃ and l̃

and m̃ are the identical tangent line passing through the

cusp point and ñ is the tangent line passing through the

inflection point. The two roots of the quadratic portion

of I t s are equal

td sd d2 2d1 (6)

and k, l, and m can determined with same equation with

serpentine.

4) If d1 0 d2 0, it is a cusp with cusp at infinity.

The parameters of I t s for the inflection point is

tl sl d3 3d2

tm sm 1 0
(7)

and has a double root at parametric infinity. k, l, and m

are determined as:

tl t3l 1

tl
1
3
sl t2l tl sl 1

tl
2
3
sl t2l tl sl

2 1

tl sl tl sl
3 1

(8)

5) If d1 d2 0 d3 0, it is a quadratic curve and k,

l, and m are expressed as:

0 0 0
1
3

0 1
3

2
3

1
3

2
3

1 1 1

(9)

6) If d1 d2 d3 0, it is a Line i.e. all four control

points are collinear, and we directly align the line with

an edge.

We want to always have f p 0 when the point is inside

the curve. Therefore, after computing k, l, and m for all

control points, we select an interior point P and compute its

corresponding kP, lP, and mP. If f P 0, all k’s and l’s of

control points times 1.


